

How CHRIS-PROBA images can be used for new aquatic applications?

Héloïse Lavigne, Kevin Ruddick, Quinten Vanhellemont CHRIS-PROBA end of mission workshop 17-18 Jan. Gent

Outlines and objectives

A. Use of CHRIS-PROBA for aquatic applications

Hyperspectral advantages: Distinction of sediment types and phytoplankton group, retrieving chlorophyll-a in very challenging waters.

- 1. Development of a dedicated image processing and validation
- 2. Examples of applications

B. Future applications of hyperspectral sensors and limitations

The example of P. globosa blooms

Retrieving of P. globosa with in situ hyperspectral data

Which are the main requirements for hyperspectral sensors?

New CHRIS processor for water targets

Interband relative calibration (methods)

Hypothesis: Top of atmosphere reflectance spectra above clear oligotrophic waters should be smoothed.

Validation : against in situ measurements

1 match-up

1 match-up

Argentina Latitude : -35,58°N Longitude: -58,08°W

Ponctual TriOS measurement

Belgium waters Latitude : 54,24°N Longitude: 2,92°W

Mutispectral aeronet OC station

2 match-ups

Belgium waters Latitude : 51,35°N Longitude: 3,17°W

Hyperspectral autonomous station (PANTHYR)

Validation : against in situ measurements (1/3)

Validation : against in situ measurements (2/3)

Validation : against in situ measurements (3/3)

relative error for CHRIS-PROBA water reflectance (zoom +/-30%)

wavelength (nm)

ACOLITE processor for CHRIS-PROBA

https://github.com/acolite

Open source software for aquatic atmospheric correction Includes many sensors (S2, S3, Landsat, Pléiades, superDove, PRISMA, etc.) In 2021, CHRIS-PROBA has been added.

ACOLITE for CHRIS-PROBA

- Noise Reduction (Gomez-Chova et al. 2008)
- Inter-band relative calibration (Lavigne and Ruddick, 2021 IGARSS proceeding)
- AC is based on DSF atmospheric correction (Vanhellemont et al., 2018)

Comparison of ACOLITE and SNAP CHRIS tool box processing

Retrieval of water constituents: Suspended Particulate Matter (SPM) Comparison of reflectance spectra for different rivers plume

Retrieveing Chl-a in very complex waters (highly turbid waters of the Rio de la Plata Argentina)

Use of an hyperspectral algorithm (Dogliotti et al., 2021 IGARSS proceedings)

P. Globosa blooms in the Southern North Sea monitored with in situ hyperspectral system (PANTHYR)

- Develop at spring after a diatom bloom in April-May
- Not toxic but produces a foam that accumulates on beaches (negative economic impact). This can lead to dramatic accidents.
- Monitored in the OSPAR program
- Monitored at spring 2020 with a PANTHYR System.
 - TRIOS acquisitions for water reflectance
 - Every 20 minutes
 - From sunrise to sunset.

P. globosa foam on the beach

https://www.blueaccelerator.be/

Analysis of the impact of inter-band calibration uncertainties

Error on inter-band calibration need to be less than 0,25% at TOA

summary

- Demonstrate the CHRIS hyperspectral mode (mode 1) can be used for coastal and inland water targets.
- Propose a dedicated processing based on Dark Spectrum Fitting atmospheric correction with inter-band relative uncertainty correction.
- Validation shows good results in general except an under-estimation in the 400nm-500nm range.
- ACOLITE processor will integrate CHRIS processor in its next released.
- Demonstrate the utility of hyperspectral CHRIS images for certain applications
- Show the limitations of CHRIS-PROBA for applications based on second derivatives and pigment retrieval.
- High need to provide very good inter-band relative calibration

Level 2 CHRIS sample dataset and processor

Open sample dataset of Level 2 CHRIS mode 1 (hyperspectral) images Netcdf format

Site name	code	date	latitude	longitude
Chascomus	C5	2018-03-19	-35.58°N	-58.02°E
Chascomus	C5	2019-03-21	-35.58°N	-58.02°E
Le-Verdon	J4	2018-09-07	45.55°N	-1.04°E
Nice	N9	2018-10-22	43.65°N	7.20°E
Ostend	O6	2018-05-04	51.24°N	2.92°E
Ostend	06	2020-05-05	51.24°N	2.92°E
Port-St-Louis	P5	2018-09-01	43.32°N	4.88°E
Pauillac	P6	2018-09-08	45.20°N	-0.74°E
Shanghai	Q3	2018-10-29	31.47°N	121.77°E
Thornton	T6	2019-04-04	51.53°N	2.95°E
Buenos-Aires	U2	2019-01-11	-34.56°N	-58.40°E
Buenos-Aires	U2	2020-03-01	-34.56°N	-58.40°E
Zeebrugge	Z5	2018-08-31	51.35°N	3.17°E

ftp://ftp.rbins.be/heloise/IGARSS2021_DATA_SUP/L2_CHRIS_sample_dataset_IGARSS2021.zip

PROCESSOR ACOLITE: <u>https://github.com/acolite/acolite</u> ACOLITE for CHRIS already available in the beta version Very soon : release of the ACOLITE including CHRIS processor

Validation : against in situ measurements (summary)

Inter-bands calibration : selection of polynomial degree

Inter-bands calibration : selection of fits (with D)

D < 0.03 Spectra is well fitted Spectra is retained for the computation of calibration coefficients

Spectral shape is too complex to be properly fitted. This spectra is not retained as D > 0.03

Validation

Processed with inter-band calibrationProcessed without inter-band calibration

Buenos-Aires image on 2020-11-13 (-34.56°N, -58.40°E)

Etang de Berre image on 2019-09-11 (43.44°N, 5.10°E)

Ostend image on 2020-05-05 (51.24°N, 2.92°E)

Re-estimation on D parameter

Interband relative calibration (methods)

