

1

From surface to the bottom: Ocean color retrievals and Argo floats

Rafael Gonçalves-Araujo DTU Aqua rafgo@aqua.dtu.dk

Optically active constituents of water

Optically active constituents of water

Nuup Kangerlua Godthåbsfjord Nuuk Fjord

Remote Sensing Reflectance (Rrs)

 $R_{\rm rs}(\theta, \phi, \lambda) = \frac{L_{\rm w}(\theta, \phi, \lambda)}{E_{\rm d}(0^+, \lambda)} \qquad \begin{array}{l} L_{\rm w}(\theta, \phi, \lambda) - \text{Water leaving radiance} \\ E_{\rm d}(0^+, \lambda) & - \text{Downwelling irradiance} \\ & \text{Source: WDNR, USA} \end{array}$

Algorithms for retrieving geophysical properties - Chlorophyll-a

Vernet et al. (2020)

Weekly Chl-a S3 Averages

2021

2022

- Allow for deriving several biogeochemical-relevant parameters
- Increased spatial and temporal sampling efforts
- Daily Global synoptic coverage
- Reaching climate-long time series
- Limitations
 - · Limited to the surface
 - Optically complex waters in fjord systems → need for regional parametrizations/algorithms
 - No data under sea-ice, overcast, polar night

Need for complementary observation tool

Teruzzi et al. (2014)

Argo floats

- Diverse types/manufacturers
- Core parameters
 - Temp, Sal, (Oxygen)

• BGC

- Chlorophyll-a, CDOM
- Backscatter
- Light
- Nitrate
- Deep
 - Below 2000m Max. 6000m

Source: Euro Argo

Argo floats

- Deployment from ship
- Start pre-programmed mission
- Conduct a test cycle
- Check GPS and data transmission
- Update configuration or continue mission
- Data becomes available to everybody via global data acquisition centers (GDAC)

Argo floats

Argo floats around Greenland

3 Sep 2024 – Source: Argo

Operational Argo floats around Greenland

3 Sep 2024 – Source: Argo

Argo measurements around Greenland

- Greenland Integrated Glos Observing System
- East Greenland Shelf September 2023

Sampled for almost one month

19 - D 218 - D 17 - D

16 - D

15 - D

Credits: Bodil Toftegård / Colin Stedmon (DTU Aqua)

Combining Argo and satellite data using AI

Smith et al. (2023)

Combining Argo and satellite data

0.2

0.6

0.8

Temperature [°C]

RMSE – top 200m

1.4

0.05

Climatology (iCLIM)

0.25

0.30

---- LSTM

····· BLSTM

--- bCNN

-- OCNN

0.20

Salinity [g/kg]

0.15

Final remarks

- Ocean color \rightarrow high resolution coverage of the oceans' surface
 - Limitations
 - Need for development of local algorithms for the optically complex fjord waters
 - Employ AI to differentiate the different optical components (e.g., Hieronymi et al 2017)
- Argo floats provide a vertical perspective of the ocean structure
- Combining Argo floats to satellite using AI techniques
 - Solve the puzzle of how to predict vertical distribution of phytoplankton biomass (Chl-a)
- More initiatives and funding for expanding the observational capacity by Argo floats
- Funding for expanding in situ observation for validation and development of local OC algorithms

Thank you!

rafgo@aqua.dtu.dk

6 Aug 23 © Copernicus

