

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop eesa

13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

Guangyao Dai¹, Songhua Wu¹, Kangwen Sun¹, Wenrui Long¹, lidar group¹, Jiqiao Liu², Weibiao Chen²

1 Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China

2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China

2023/11/13 @ ESA-ESRIN

1. Motivation

- 2. ACDL/DQ-1 introduction
- 3. Aerosol and cloud optical properties
- 4. Carbon dioxide column measurements
- 5. Summary

1. Motivation

CO₂ and CH₄ are the most important greenhouse gases responsible for global warming, currently contributing about +1.3 °C to global warming

Aerosol and cloud are the most important masses that cooling the atmosphere with -0.4 °C.

Focus on the global distributions of the CO_2 and aerosol/cloud from **Space**.

"The Paris Agreement"

1. Motivation

Sensor	Observed object		
[main Payload]	Global column CO ₂ ;		
Aerosol and Carbon	Global aerosols and clouds profile;		
Detection Lidar (ACDL)	Global pollutant distribution PM2.5 etc.		
Particulate Observing Scanning Polarimeter (POSP)	Aerosols and clouds, PM2.5		
Directional Polarization Camera (DPC)	Aerosols and clouds, PM2.5		
Environmental trace gas Monitoring Instrument (EMI)	NO_2 , SO_2 , O_3 etc.		
Wide Swath Imaging system (WSI)	Temperature and humidity, aerosols and		

Specification	Value	
Orbit	705 km,	
Orbit	sun-synchronous orbit	
Revisit duration	~ 51 days	
Weight	2.8 t	
lifetime	> 8 years 5	

> The first spaceborne lidar (IPDA) for CO2 detection in the world

The first spaceborne Iodine-based HSRL working at 532nm in the world

	Specifications	Parameters
	Wavelengths	532nm, 1064nm and 1572nm;
	Laser energy	≥130mJ@532nm
		≥190mJ@1064nm
		≥40mJ@1572nm
	Divergence	50µrad
Stability of the laser 1572nm: 0.6MHZ@10000s		1572nm: 0.6MHZ@10000s
	linewidths	1064nm: 5MHz@10000s
	PRF	20Hz@1572nm (On/Off <u>dual-pulse</u>)
		20Hz@532nm and 1064nm (dual-pulse)
	Telescope aperture	<u>1000mm</u>
	FOV	190µrad
	HSRL	lodine cell: OD > 25dB
	Receiver channels	532nm HSRL
		532nm parallel-polarized
1		532nm cross-polarized
A		1064nm aerosol
		1572nm CO2

level	Data processing	Data products	Format
Level 0	The observation data obtained by downlinking multi-packet data integrity inspection and data splicing through the two channels of the satellite.	Raw data	RAW
Level 1A	Process the level 0 aerosol data, obtain the profiles of 532 nm and 1064 nm channels, with the geographic location and height corrected.	Profiles data of 532 nm and 1064 nm channels	HDF5
Level 1B	Process the level 0 CO2 data, obtain the profiles of 1572 nm channel, with the geographic location and height corrected.	Profiles data of 1572 nm channel	HDF5
Level 2A	Attenuated backscatter coefficient with systematic constant correction	Attenuated backscatter coefficient	HDF5
Level 2B	Differential Absorption Optical Depth (DAOD) products	DAOD	HDF5
Level 2C	Cloud and aerosol products including extinction coefficient, backscatter coefficient, depolarization ratio, AOD, lidar ratio and color ratio	Cloud and aerosol optical properties	HDF5
Level 2D	XCO2	XCO2	HDF5

ACDL/DQ-1 performance assessment:

- ACDL/DQ-1 have been operating in-orbit for more than 17 months;
- Now about 1 billion laser shots have been emitted in total from the switch-on of ACDL/DQ-1 on 17th May 2022;

Dai G, Wu S, Long W, et al. Aerosols and Clouds data processing and optical properties retrieval algorithms for the spaceborne ACDL/DQ-1[J]. AMTD, 2023, 2023: 1-20.

Specifications	Parameter
wavelength	532.024 nm; 1064.490 nm
pulse energy	~130 mJ@532 nm; ~190 mJ@1064 nm
repetition rate	20 Hz @ dual-pulse (40 Hz)
Etalon filter bandwidth	<20 pm
sampling rate	50 MHz
vertical resolution	3 m@<7.5 km ; 24 m (8 point average)@>7.5 km
horizontal resolution	~ 330 m

High-spectral-resolution lidar (HSRL) with an iodine vapor absorption filter (working at 1110 line, bandwidth<2GHz) and polarization detection

- > 532 nm (cross- and parallel-polarized channels and molecular channel)
- 1064 nm channel

9

• Profiling of aerosol and cloud with use of HSRL

10

• Validation for aerosol and cloud products

3. Aerosol and cloud optical properties: ACDL calibrations

3. Aerosol and cloud optical properties: ACDL calibrations

Multi-channel global calibration coefficients of ACDL (June, July 2022)

3. Aerosol and cloud optical properties: ACDL calibrations

Averaged attenuated backscattering coefficients after calibration at 31-35 km altitude versus model results. (30 July, 2022; 31 October, 2022)

Meng F, Dai G* et al., in preparation.

Data products retrieval flowchart

al Attenuated Backscatter 532 PulseA, km⁻¹ sr⁻¹ UTC: 2023-03-08 18:08:01 to 2023-03-08 18:45:45 , Night , Version 1.1.2

Cloud and acrosol classification UTC:2023-03-08 18:08:02 to 2023-03-08 18:45:41

Dust event measurement case in Beijing on 8th March, 2023

Canada wildfire on 5 June, 2023

3. Aerosol and cloud optical properties: validation with CALIOP

ACDL and CALIOP simultaneous measurement: 2-3 times higher

3. Aerosol and cloud optical properties: validation with GB lidars

3. Aerosol and cloud optical properties: validation with AERONET/MODIS

4. Carbon dioxide column measurements

4. Carbon dioxide column measurements

ACDL/DQ-1 CO2 performance assessment:

- Comparing with passive instruments, the ACDL/DQ-1 is capable of providing CO2 measurements both daytime and nighttime;
- ACDL/DQ-1 covers the CO2 measurements at high latitudes (from 82° N to 82° S);

4. Carbon dioxide column measurements

ACDL/DQ-1 CO2 measurements:

• Monthly coverage rate is 8-10 times higher than passive satellites

4. Carbon dioxide column measurements: validation

Sites	Lat/Lon	Instruments	
<u>Xianghe, Hebei</u>	39.75N 116.96E	Bruker 125HRs	Additional sites:
<u>Hefei, Anhui</u>	31.91N 117.17E	Bruker 125HRs	Edwards, Park Falls, East
<u>Shanghai</u>	31.18N 121.59E	Bruker 125HRs	Trout Lake, Karlsruhe etc.
<u>Tsukuba, Japan</u>	36.051 N 140.121E	Bruker 125HRs	

422 420 R-square:0.934 RMSE:0.63 ppm 418 N=77 416 414 414 Pasadena . Darwin East Trout Lake V Edwards Izana 412 Karlsruhe Lamont ۲ Lauder 410 * Park Falls ٠ Saga to one One 0 Wollongong 408 412 414 416 418 420 422 408 410 ACDL XCO₂/ppm

ACDL/DQ-1 CO2 measurements:

- R square: 0.934;
- RMS: 0.63ppm.

5. Summary

- 1. The first spaceborne lidar for simultaneously observation of CO2 and aerosol based on IPDA and HSRL techniques are introduced. The first in-orbit demonstration for IPDA and HSRL in space.
- 2. The procedures for the multi-channel calibration, data pre-processing, and retrieval algorithms are described. The following properties are calculated based on the data from ACDL/DQ-1: <u>Backscatter coefficient</u>; <u>Depolarization</u> ratio; Extinction coefficient and Lidar ratio etc.
- 3. Globally CO2 column concentrations are measured with active instruments (lidars) for the first time, to our knowledge.
- 4. Several measurement cases with different scenes (e.g., dust layers, pollutions, smoke, Hunga Tonga sulfate...) are presented with high temporal and spatial resolution. The observation capability of ACDL/DQ-1 is hence demonstrated.
- 5. For the further research, the calibrations and validations for the ACDL data products with collocated ground-based lidars and satellite active/passive instruments (EarthCARE...) are planned. Thus the international contributions to ACDL/DQ-1 are highly recommended and warmly welcome.

