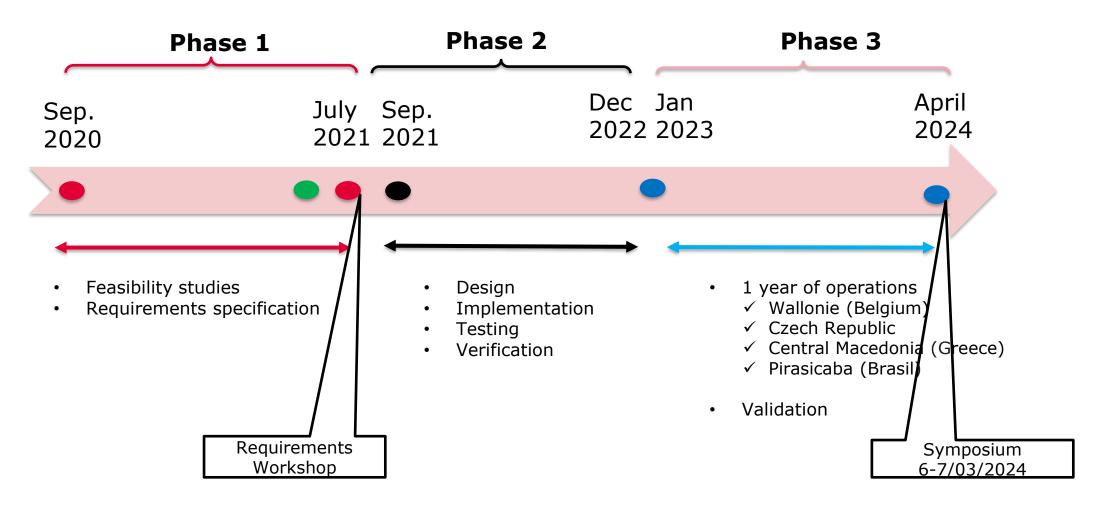


WORLDSOILS – A SOC PREDICTION SYSTEM

- Develop a pre-operational monitoring system in cloud environment capable of:
 - Predicting Topsoil Organic Carbon (SOC) at regional
 and continental scales from EO satellite data
 - Leveraging upon multitemporal soil-spectral data
 archives (3-year time series) and modelling techniques
- Joining end users and EO experts for developing soil indices, relevant for monitoring topsoil at regional and continental scales.

PROTOTYPE CHARACTERISTICS

- **Yearly estimations** of topsoil organic carbon at continental/regional scales.
- Modular: allowing future extension to additional soil indices.
- Spatial **resolution**:100x100m and 50x50m


	100x100m		50x50m	
Case Studies	SOC Prediction	Validation	SOC Prediction	Validation
#1 Wallonia, Belgium	Yes	Yes	Yes	Yes
#2 Czech Republic	Yes	Yes	Yes	Yes
#3 Central Macedonia, Greece	Yes	Yes	Yes	Yes
Continental Europe	Yes			
#4 Pirasicaba, Sao Paulo, Brazil	Yes			

- Large multitemporal satellite series (3 years)
- **Confidence** metrics provision.
- Validation over the three European regions.

PHASES & ACTIONS

NRCs AND STEERING COMMITTEE

National Reference Centres for Soil

Steering Committee

STAKEHOLDERS

And many more to mention

PHASE 1 – FEASIBILITY & REQUIREMENTS

■ Feasibility studies – How well can EO measure SOC and other soil properties?

- Development of SOC prediction models for bare soils and vegetated soils.
- Assessing the effects of applying laboratory spectral models to the remote sensing signal.
- Combining prediction and Digital Soil Mapping.

Requirements gathering process – What are end users' needs/expectations?

- Large enquire questionnaire gathering system and scientific requirements and implementation options.
- Desirable end users' requirements across the engaged community, some falling beyond the project's scope.

■ Reqs baseline consolidation – What requirements paved the project?

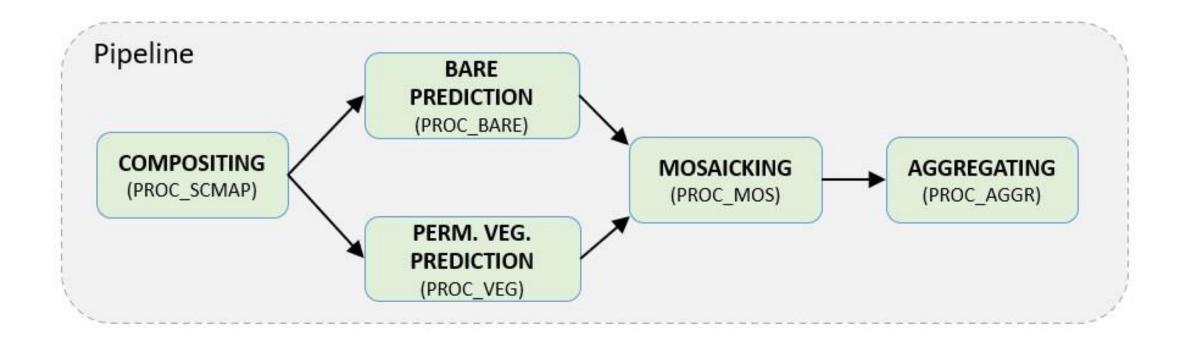
- Review process with Steering Committee, National Soil Reporting Centers and End Users.
- Requirements Workshop read <u>here</u> the report about **system and product** reqs.

PHASE 2 – WHAT'S THE SYSTEM LIKE?

System design – What system components assembled the system?

- Methodology and algorithm theoretical basis for SOC index, metadata, ancillary information and production workflow.
- EO, in-situ and ancillary data/products needed for operation and validation.
- Detailed system architecture and processing steps as per methodology above.
- System implementation plan: data availability, storage, software libraries and tools, computing power required, operational costs.
- Successful results during Acceptance Review (Nov. 2022)

System implementation – What technologies were used to attain the pipeline?


- Open Telekom Cloud Infrastructure
- Docker & Kubernetes
- Apache Airflow (scheduler and web user interface)
- Object Storage service-S3 buckets

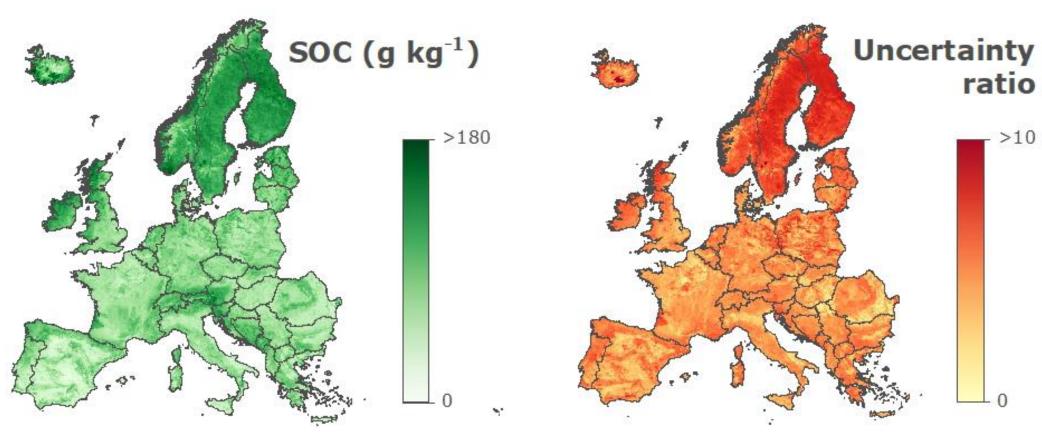
PHASE 2 – WHAT'S THE SYSTEM LIKE?

- **Production line: Deployment and Demonstration** Functional system tests
 - Successful results during Acceptance Review (Nov. 2022)

Outcomes – WORLDSOILS Graphic User Interface

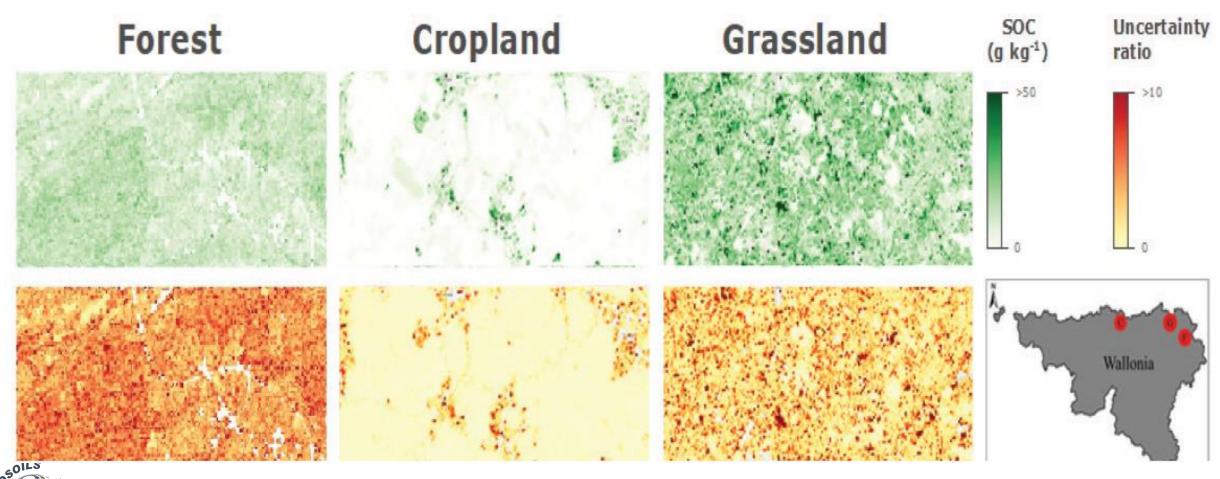
- Developed by ISRIC
- Data visualisation and inspection
- Data download

Outcomes – Portfolio


■ Visit portfolio details at https://world-soils.com/resources/portfolio/

EO Product	Pixel Resolution (meters)	Minimum Mapping Unit (MMU, ha)	Periodicity and EO data
 European topsoil SOC content 	100 m	1 ha	
2. SOC pixel based uncertainty	100 m	1 ha	Annual Integrating 3-years of Sentinel-2 imagery 2018-2020, 2019-2021, 2020- 2022
3. Regional topsoil SOC content	50 m	0.25 ha	
4. SOC pixel based uncertainty			
5. Mean reflectance composites	20 m	0.04 ha	
6. Bare soil mask			
7. Soil reflectance composite			
8. Bare soil frequency			

Sh.


European Topsoil SOC

Regional Topsoil SOC

Validation case studies – How has the system been validated?

- Validation plan, with NRCs and Brazil

 validation methods and metrics; validation input and reference data.
- Validation stages:
 - Validation data sets description sheet
 - Validation methodology (general and/or specifics per site)
 - Results of internal validation process
 - External validation and demonstration of final product by NCRs through a qualitative questionnaire

Validation against regional data sets

- Performance of the two SOC prediction models (vegetated & bare soils) → assessed by a rigorous ten-fold cross validation.
- 50m Product → Validation performed against an independent reference SOC dataset in agricultural soils provided by the National Reporting Centers on soils, distributed across agricultural land:
 - Wallonia: accuracy of the bare soil vs vegetated soil distinction of the Worldsoils model was very high
 - Czech Republic: tendency of the models to overpredict SOC values
 - Macedonia: mosaiced Mediterranean cropland pattern increases the difficulty of rigorous soil pixel assignation

INSIGHTS THAT FOLLOW

- Value of multitemporal satellite spectral composites to derive soil properties
- **Methodology** to the operability of Algorithms
- Results in **each pilot area** in Europe: Wallonia, C: Macedonia, Czech Republic
- **Trial** in Piracicaba (Brazil). Projection of satellite SOC algorithms beyond regions.
- Potential applications of the WORLDSOILS model: SOC content evolution, comparison of SOC content in fields under conventional and conservation agriculture, spatial patters of SOC in agricultural soils

