

André Visser, Sigrún Jónasdóttir and Jérôme Pinti

DTU Aqua National Institute of Aquatic Resources

BioEcoOcean

SIMONS FOUNDATION

Visser AW (submitted) Residence Times and Legacy of Biogenic Carbon in Ocean Reservoirs. PNAS

lipid

pump

(>600 m)

The biological carbon pump: Carbon Export, Carbon Sequestration and Residence Time

10 PgC / yr

How long Carbon stays in the ocean's interior if it is injected at 1000m depth?

carbon pump. Limnology and Oceanography, 67(6), pp.1238-1256.

First passage time from 1000 m depth (year)

Method

depth, duration, mortality

life history

LIMNOLOGY and **OCEANOGRAPHY** © 2023 The Authors. Limmology and Oceanography published by Wiley Periodicals Liberal of Association for the Sciences of Limmology and Oceanography The global contribution of seasonally migrating copepods to the biological carbon pump Jérôme Pinti ⁽⁰⁾, ^{1*} Sigrún H. Jónasdóttir ⁽⁰⁾, ² Nicholas R. Record ⁽⁰⁾, ³ André W. Visser^{2,4} Transport matrix Sources and sinks $\frac{dt}{dt} + \mathbf{Q} \mathbf{c} = \mathbf{s}$ dc Tracer concentration Steady-state equilibrium concentration $c^* = Q^{-1}s$ with $c^*(z=0) = 0$ Integrating equilibrium concentration

 $C_{seq} = \mathbf{c}^* \cdot \mathbf{V}$

Sequestration time scale

$$T_{seq} = C_{seq} \, / \, (\mathbf{s} \cdot \mathbf{V})$$

Calanus finmarchicus

Calanoides natalis

Calanoides acutus

Neocalanus tonsus

Results - Export and Sequestration

Area [10 ⁶ km ²]	Abundance [#/m ²]	Biomass [GgC]	Injection [GgC / yr]	Sequestration [PgC]	Sequestration time scale [yr]	Sequestration biomass ratio [-]
16	500 - 11,500	38 - 59	12 - 28	7.5 - 15.5	427 - 749	197 - 263
3.8	15,000 - 40,000	4.9 - 12	2.5 - 7.8	1.2 - 4.0	494 - 509	245 - 333
6.57	5,000 - 27,000	19 - 26	17 - 24	2.7 - 7.5	157 - 311	142 - 288
30.7	800 - 1.300	6 - 19	4 - 14	1.5 - 6.8	346 - 510	250 - 358
0.69	15 000 - 127 500	11-11	03-14	0.1 - 0.7	351 - 539	91 - 159
0.00	500 - 127 500	69 - 120	36 - 75	13 - 35	157 - 749	01 100
	Area [10 ⁶ km ²] 16 3.8 6.57 30.7 0.69	Area [10 ⁶ km ²] Abundance [#/m ²] 16 500 - 11,500 3.8 15,000 - 40,000 6.57 5,000 - 27,000 30.7 800 - 1,300 0.69 15,000 - 127,500 500 - 127,500 500 - 127,500	Area [10 ⁶ km ²] Abundance [#/m ²] Biomass [GgC] 16 500 - 11,500 38 - 59 3.8 15,000 - 40,000 4.9 - 12 6.57 5,000 - 27,000 19 - 26 30.7 800 - 1,300 6 - 19 0.69 15,000 - 127,500 1.1 - 4.4 500 - 127,500 69 - 120	Area [10 ⁶ km ²] Abundance [#/m ²] Biomass [GgC] Injection [GgC / yr] 16 500 - 11,500 38 - 59 12 - 28 3.8 15,000 - 40,000 4.9 - 12 2.5 - 7.8 6.57 5,000 - 27,000 19 - 26 17 - 24 30.7 800 - 1,300 6 - 19 4 - 14 0.69 15,000 - 127,500 1.1 - 4.4 0.3 - 1.4	Area [10 ⁶ km ²]Abundance [#/m ²]Biomass [GgC]Injection [GgC / yr]Sequestration [PgC]16500 - 11,50038 - 5912 - 287.5 - 15.53.815,000 - 40,0004.9 - 122.5 - 7.81.2 - 4.06.575,000 - 27,00019 - 2617 - 242.7 - 7.530.7800 - 1,3006 - 194 - 141.5 - 6.80.6915,000 - 127,5001.1 - 4.40.3 - 1.40.1 - 0.7500 - 127,50069 - 12036 - 7513 - 35	Area [10° km²]Abundance [#/m²]Biomass [GgC]Injection [GgC / yr]Sequestration [PgC]Sequestration time scale [yr]16500 - 11,50038 - 5912 - 287.5 - 15.5427 - 7493.815,000 - 40,0004.9 - 122.5 - 7.81.2 - 4.0494 - 5096.575,000 - 27,00019 - 2617 - 242.7 - 7.5157 - 31130.7800 - 1,3006 - 194 - 141.5 - 6.8346 - 5100.6915,000 - 127,5001.1 - 4.40.3 - 1.40.1 - 0.7351 - 539500 - 127,50069 - 12036 - 7513 - 35157 - 749

Results - Export and Sequestration

	Species	Sequestration time scale [yr]
	C. hyperboreus	427 - 749
	C. finmarchicus (ext.)	494 - 509
	N. tonsus	157 - 311
	C. acutus	346 - 510
	C. natalis	351 - 539
	Total	157 - 749
Residence ti	me≈500 years 🚽	

First passage time from 1000 m depth (year)

Results - Export and Sequestration

13 – 35 PgC

Calanus finmarchicus Calanus hyperboreus Calanoides natalis Calanoides acutus Neocalanus tonsus*

*Western Pacific sector only

Biogeography extension for

Neocalanus tonsus 23–62 PgC

Lipid Shunt

Decoupling the export of carbon from the export of nutrients

Lipid pump highly efficient

Legacy Carbon

The carbon capital of marine biota is not in their living biomass, but rather the carbon laid down by preceding generations.

If left undisturbed, reservoirs tend to equilibrium on the time scale of their residence times.

Equilibrium => flux in \approx flux out

Legacy Carbon

Living biomass : sequestered carbon

How much sequestered carbon is maintained in the oceans per unit living biomass for various species

Species	Biomass [GgC]	Sequestration [PgC]	Sequestration biomass ratio [-]
C. hyperboreus	38 - 59	7.5 - 15.5	240
C. finmarchicus (ext.)	49-12	12-40	300
	4.0 12	1.2 4.0	
N. tonsus	19 - 26	2.7 - 7.5	200
C. acutus	6 - 19	1.5 - 6.8	300
C. natalis	1.1 - 4.4	0.1 - 0.7	120
Total	69 - 120	13 – 35	

Global distribution of respired carbon from diapausing *Calanus finmarchicus* in the North Atlantic

Ranking specific populations with respect to the specific sequestered carbon

Manage resource harvesting.

Fishing down the food web

the cost in Legacy Carbon

Species	Biomass [GgC]	Sequestration [PgC]	Sequestration biomass ratio [-]
C. hyperboreus	38 - 59	7.5 - 15.5	240
C. finmarchicus (ext.)	4.9 - 12	1.2 - 4.0	300
N. tonsus	19 - 26	2.7 - 7.5	200
C. acutus	6 - 19	1.5 - 6.8	300
C. natalis	1.1 - 4.4	0.1 - 0.7	120
Total	69 - 120	13 – 35	

Even if fished sustainably, harvesting *Calanaus* will reduce the stock size.

A reduction is stock size by M tonnes will cause the release of 300 x M tonnes of carbon from the oceans.

Fisheries Management is not just about sustainably maintaining populations, it also has an impact on carbon sequestration that is not fully appreciated.

Fishing down the food web

the cost in Legacy Carbon

Species	Biomass [GgC]	Sequestration [PgC]	Sequestration biomass ratio [-]
C. hyperboreus	38 - 59	7.5 - 15.5	240
C. finmarchicus (ext.)	4.9 - 12	1.2 - 4.0	300
N. tonsus	19 - 26	2.7 - 7.5	200
C. acutus	6 - 19	1.5 - 6.8	300
C. natalis	1.1 - 4.4	0.1 - 0.7	120
Total	69 - 120	13 – 35	

Even if fished sustainably, harvesting *Calanaus* will reduce the stock size.

A reduction is stock size by M tonnes will cause the release of 300 x M tonnes of carbon from the oceans.

Fisheries Management is not just about sustainably maintaining populations, it also has an impact on carbon sequestration that is not fully appreciated.

