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Beyond mapping flows at the surface of the core

• Ingredients: magnetic field model + statistics from geodynamo simulations, for example 
covariance matrix for the flow coefficients


• Limitation: geomagnetic time series too short to build statistics  crucial role of the 
geodynamo simulations


• Stress-free simulations (  at the core surface ): enable to resolve the 
boundary layer attached to the core-mantle interface and thus to attain low viscosity and short 
time-scale; flow directly extracted as the flow at 


• Tool: radial component of the induction equation at  , 


• Better codes (e.g. XShells from N. Schaeffer) and computers: it becomes feasible to obtain 
statistics and synthetic data from no-slip boundary simulations (  at ) with ‘extreme’ 
values of the parameters


• Description of the boundary layer: prerequisite to use the three components of the induction 
equation at the core-mantle boundary (CMB)


• First step: estimation of  at , magnetic field model used at this stage and at this stage 
only


• Second step: imposing that  matchs with a vector field  deriving from a potential  
at  gives a relationship between the radial shear in the flow  and the flow 

→

∂(u/r)/∂r = 0 r = rc

r = rc

r = rc
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∂t
= − ∇H ⋅ (uBr)

u = 0 r = rc

u r = rc

∂B/∂t −∇Φ Φ
r = rc δ = r∂u/∂r u

Flow at the core surface for 2020 
CHAOS-7 model (Finlay et al., 2020) 
Stress-free prior (Aubert et al., 2013)

Superposition of a steady anticyclonic 
planetary-scale eccentric gyre and a growing 

Eastward flow under the Pacific Ocean 
(see Ropp & Lesur, 2023) 



Horizontal components of the induction equation

Radial shear in the flow at ,  
stress-free dynamo simulation (  at ) 

, correlation 

r = rc

δ = u r = rc

τG ≃ 0 c = 0.76

Firsov, Jault, Gillet, Aubert, Mandea, GJI, 2023

Neglecting electrical currents at the core surface ( ):


  


In the presence of a conducting layer at the bottom of the mantle:

,  at 


and  matches a potential field


This boils down to


  with  and 


Term dependent on the mantle electrical conductivity important at high frequency

If an independent relationship between  and  is available, we can estimate  and 

thus the conductance , where  is the thickness of the conducting layer at 
the bottom of the mantle
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B = Bδ ∣r=rc
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∂Bδ
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u δ τG
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Motivations

• Testing physical models about the flow in the Earth’s core: invariance of the flow in the direction parallel to the axis of rotation 
(quasi-geostrophy) vs radial stratification


• Improving models of the flow at the Earth’s core surface


• Gaining insight on the physics of the core: is the relative geometry of the motions and of the ambiant magnetic field really 
controlled by the boundary condition on the magnetic field changes at  ?


• Probing the electrical conductivity of the lowermost mantle

r = rc



Radial shear in the flow  at the top of the core below the boundary layer 
from the geomagnetic model Cov-Obs-x2 (based on Swarm data)

δ

Numerical simulation of Aubert & Gillet (2021), 
from Finlay et al. (2023)

Inverted flow Cov-Obs-x2 for 2018

Derivation of the shear  from the flow  
assuming quasi-geostrophy

δ u

Quasi-geostrophy:


•  invariant along the rotation axis (i.e. -invariant)


• 


•  at the surface   everywhere, and in particular  
below the core-mantle boundary

us, uϕ z

uz ∝ z

u → u δ = r∂u/∂r

 δ ∼ 30 u

Agreement (mainly next to the 
equator)  between the two 

estimates for the shear; 
correlation  c = 0.79



Radial shear in the flow in no-slip geodynamo simulations
r = rc − 18 dE

c = 0.23

c = 0.01

c = 0.68

Radial shear reasonably well predicted from the QG hypothesis

No correlation between the shear estimated as in the geophysical application and the actual shear in the simulation


 asymptotic limit of the flow in the Ekman layer (see the poster ‘Flow at the top of the free stream in geodynamo calculations’)u∞

c = 0.12

Reference

Schaeffer, Jault, Nataf & Fournier, GJI, 2017

dE =
ν
Ω

= E1/2D

E =
ν

ΩD2

D = rc − ri

E = 10−6

Rm ≃ 500

Pm =
ν
η

Pm = 0.45

Simulation S1:

c = 0.4



Depth at which the shear is best estimated

Depth below 
the CMB 25 % median 75 %

6 dE 0.14 0.18 0.24

18 dE 0.24 0.28 0.34

38 dE 0.3 0.35 0.4

Correlation between the shear estimated from  

and the actual shear in the geodynamo simulation (S1)

u∞

c = 0.4



Shear from synthetic data, first lessons

• Radial shear in the flow the strongest next to the equator, as expected for quasi-geostrophic (QG) flows


• Radial shear reasonably estimated from the QG hypothesis


• First difficulty: estimation of the core surface flow; some success using  but not the estimated flow (to date)  need to 
improve the estimation of the flow


• Location for which the shear is best estimated: not just below the viscous boundary layer where magnetic diffusion remains 
important; illustration for  whereas the Ekman depth  is  only

u∞ →

r = 0.975rc dE 6.5 10−4 rc



Diffusion below the core surface

Simulation S1 of Schaeffer et al. (2017), toroidal coefficient

r = rc − 2.5 dE

Inside the Ekman layer

r = rc − 18.5 dE r = rc − 58.5 dE

In the bulk Parameters for S2:  E = 10−7

Rm ≃ 500 Pm = 0.32

Comparison between 

the simulations S1 and S2:
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Ω

Sketch of the viscous boundary layer

θ

Thickness of the Ekman layer: 


replaced at the Equator by an Hartmann


boundary layer of depth , which


is independent of the rotation

dE

cos θ

dM =
ρμνη

B |r=rc

dM

dE

cos θ



Test of the forward problem: toroidal part of the induction 
term ∇ × (u × B)

c = − 0.21 c = − 0.29

• Simulation S1


• 


• Test of the forward problem 


• Starting hypothesis, anti-correlation 


• diagnostics slightly better next to the equator

r = rc − 58.5 dE

Au + Bδ = 0

c = − 1



Perspectives

• No-slip geodynamo simulations for more extreme parameters, e.g.  (as in S2),   
(instead of  for S1 and S2) and smaller magnetic Prandtl number  to better model the physics 
next to the Equator


• To reproduce the geophysical case: 


• Search for the time-scales and length-scales for which the forward model gives the best results


• Extraction of wave-like motions in the equatorial region which present small length-scales in the 
cylindrical radial direction


• Taking , the term that depends on the the conductance  becomes significant for motions with 
period  about 5 yrs when the conductance  S; linear dependence of the perceptible  on 


• Investigation of geodynamo models with electrically conducting mantle


• Key to estimate the mantle conductivity  from below: increasing the time resolution of core surface 
flow models as permitted by the availability of satellite data (Swarm and Macau Science satellites)

E = 10−7 Rm = 2000
500 Pm

Pm ≪ 1

δ ∼ 30 u Σ
T Σ ∼ 108 Σ T

σm

Fig. 3. QGMC eigenmode of period T = 7.16 y. Its flow component, of even orderm (Section 4), is dominated by an azimuthal wave numberm= 2. Mollweide
projection of the flow (A) and the radial magnetic field br/

√
ρµ (B) at the core surface. Equatorial cross-section of the azimuthal flow uφ (C) and magnetic field

bφ/
√
ρµ (D). Both u and b/√ρµ have been normalized to the maximum azimuthal velocity value. Grid lines in the equatorial slices correspond to the grid lines

of the surface projections.

flow, in qualitative agreement with the observations at interannual
periods. QG eigenmodes present a strong cylindrical radial shear
of the z-invariant azimuthal velocity, in particular in the vicinity
of the equator. This translates into a much stronger azimuthal
magnetic field perturbation in the bulk of the core, as we expect
from the scale analysis outlined in the previous section. Deep in
the core, the magnetic field perturbation dominates the velocity
(see equatorial slices in Fig. 3 C andD), with the magnetic energy
|b|2/(2µ) larger than the kinetic energy ρ|u|2/2 by a factor of
≈ 36 (averaged over the volume).This is in agreement with Eq. 2
and the energy ratio anticipated for MC eigenmodes (10). The
distinction between the strength of the perturbation at the surface
and in the bulk is more easily seen in the azimuthal rms values,

⟨f ⟩ (s , z ) =

√
1

2π

∮
f (s ,φ, z )2 dφ, of the velocity and themag-

netic field perturbation, evaluated at the core surface (z = H =√
r20 − s2) and in the equatorial plane (z = 0), as shown in Fig. 4.

In the equatorial plane, the dominant component is along the
azimuth, with ⟨bφ⟩ (s , 0) dominating over ⟨br ⟩ (s , 0) for s/r0 !
0.5. Except in the vicinity of the equator, where ⟨br ⟩ (s , 0) and
⟨br ⟩ (s ,H ) tend to superimpose, the magnetic perturbation is
much stronger in the bulk than at the surface. Deep in the core, the
velocity component of the mode is weaker than the magnetic one
everywhere, with ⟨uφ⟩ (s) less than ⟨bφ⟩ (s , 0)/

√
ρµ. Only close

to the surface (and in particular the equator), the kinetic part of
the mode dominates. At the core surface, the magnetic to kinetic
energy ratio of the torsional Alfvén and the QG MC eigenmodes
decreases with their frequency (SI Appendix, Figs. S8 and S9).

3. Discussion

The frequency of rapid MC waves depends on the strength B0,s

of the magnetic field in the cylindrical radial direction when

they have large radial wave number k. With this hypothesis, and
neglecting the subdominant magnetic dissipation, we can derive a
local dispersion relationship (Section 4) and obtain a wave number

k0 =

(
mΩ

VAH 2

)1/3

, [4]

above which only Alfvén waves exist and below which we can
separate inertial (Rossby) waves from MC waves, with

Fig. 4. Latitudinal profiles of the rms azimuthal flow ⟨uφ⟩ (λ(s)) and mag-
netic field perturbations ⟨bφ⟩ (λ(s), z= 0)/√ρµ and ⟨br⟩ (λ(s), z= 0)/√ρµ
in the equatorial plane and ⟨br⟩ (λ(s), z= ±H)/√ρµ at the core surface. All
profiles have been normalized to the maximum velocity value. The latitude
λ(s) = arctan (H(s)/s) is that of the circle on the spherical surface intersecting
the geostrophic cylinder of radius s. The profiles correspond to the eigenmode
shown in Fig. 3.
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Fig. 3. QGMC eigenmode of period T = 7.16 y. Its flow component, of even orderm (Section 4), is dominated by an azimuthal wave numberm= 2. Mollweide
projection of the flow (A) and the radial magnetic field br/

√
ρµ (B) at the core surface. Equatorial cross-section of the azimuthal flow uφ (C) and magnetic field

bφ/
√
ρµ (D). Both u and b/√ρµ have been normalized to the maximum azimuthal velocity value. Grid lines in the equatorial slices correspond to the grid lines

of the surface projections.

flow, in qualitative agreement with the observations at interannual
periods. QG eigenmodes present a strong cylindrical radial shear
of the z-invariant azimuthal velocity, in particular in the vicinity
of the equator. This translates into a much stronger azimuthal
magnetic field perturbation in the bulk of the core, as we expect
from the scale analysis outlined in the previous section. Deep in
the core, the magnetic field perturbation dominates the velocity
(see equatorial slices in Fig. 3 C andD), with the magnetic energy
|b|2/(2µ) larger than the kinetic energy ρ|u|2/2 by a factor of
≈ 36 (averaged over the volume).This is in agreement with Eq. 2
and the energy ratio anticipated for MC eigenmodes (10). The
distinction between the strength of the perturbation at the surface
and in the bulk is more easily seen in the azimuthal rms values,

⟨f ⟩ (s , z ) =

√
1

2π

∮
f (s ,φ, z )2 dφ, of the velocity and themag-

netic field perturbation, evaluated at the core surface (z = H =√
r20 − s2) and in the equatorial plane (z = 0), as shown in Fig. 4.

In the equatorial plane, the dominant component is along the
azimuth, with ⟨bφ⟩ (s , 0) dominating over ⟨br ⟩ (s , 0) for s/r0 !
0.5. Except in the vicinity of the equator, where ⟨br ⟩ (s , 0) and
⟨br ⟩ (s ,H ) tend to superimpose, the magnetic perturbation is
much stronger in the bulk than at the surface. Deep in the core, the
velocity component of the mode is weaker than the magnetic one
everywhere, with ⟨uφ⟩ (s) less than ⟨bφ⟩ (s , 0)/

√
ρµ. Only close

to the surface (and in particular the equator), the kinetic part of
the mode dominates. At the core surface, the magnetic to kinetic
energy ratio of the torsional Alfvén and the QG MC eigenmodes
decreases with their frequency (SI Appendix, Figs. S8 and S9).

3. Discussion

The frequency of rapid MC waves depends on the strength B0,s

of the magnetic field in the cylindrical radial direction when

they have large radial wave number k. With this hypothesis, and
neglecting the subdominant magnetic dissipation, we can derive a
local dispersion relationship (Section 4) and obtain a wave number

k0 =

(
mΩ

VAH 2

)1/3

, [4]

above which only Alfvén waves exist and below which we can
separate inertial (Rossby) waves from MC waves, with

Fig. 4. Latitudinal profiles of the rms azimuthal flow ⟨uφ⟩ (λ(s)) and mag-
netic field perturbations ⟨bφ⟩ (λ(s), z= 0)/√ρµ and ⟨br⟩ (λ(s), z= 0)/√ρµ
in the equatorial plane and ⟨br⟩ (λ(s), z= ±H)/√ρµ at the core surface. All
profiles have been normalized to the maximum velocity value. The latitude
λ(s) = arctan (H(s)/s) is that of the circle on the spherical surface intersecting
the geostrophic cylinder of radius s. The profiles correspond to the eigenmode
shown in Fig. 3.
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Numerical calculation of a Magneto-Coriolis 
mode of period about 7 years  

(Gerick et al, 2021; Gillet et al., 2022)


