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S5P CLOUD Product

The operational S5P CLOUD product consists of the following main parameters:

1. cloud fraction (CF) - retrieved by OCRA

with cloud model CRB (clouds as reflective boundaries):

2. cloud height (CH) .
3. cloud albedo (CA) - retrieved by ROCINN CRB

with cloud model CAL (clouds as layers):
4. cloud top height (CTH)

5. cloud optical thickness (COT) = retrieved by ROCINN CAL

For the retrieval, ROCINN uses a direct inversion approach
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Machine Learning in Remote Sensing

Why Machine Learning?

Dramatically increased amount of data with latest generations of earth observation satellites
Near real time requirements (NRT) for many products

> Retrieval algorithms have not only to be accurate but also to be very fast

> Application of machine learning techniques to improve performance compared to
classical algorithms

Machine Learning for Inversion Problems:

Atmospheric retrieval problems can be formulated as inversion problems:

Find parameters x that minimize residual ||F(x) — y||, between a known vector y
and the mapping of the parameters F(x) - where F is a predefined function

Observed and fitted spectrum

In context of atmospheric retrieval:

x: State of atmosphere
y: Measured spectrum
F: Radiative transfer model (RTM) E ooo]
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Two approaches for neural networks use

1. NN as forward model of a spectral fitting algorithm:
- implements F: X — Y, state of atmosphere — spectrum

- substitutes and approximates the RTM
- gradients (w.r.t to retrieval pamareters) usually need to be provided for solver

. called in each iteration

Inversion with RTM as Forward Model Inversion with NN as Forward Model
Forward Model Forward Model
v Gt g S sl
parameters derivatives parameters 717 derivatives
— - —_— .' >

Solver Solver
< calls forward model <_

s calls forward model —
n fterations until convergence nitSrations until convergence

2. NN for direct inversion:
- implements F~1:Y - X, spectrum — state of atmosphere
- F~lis generally unknown, can only be inferred through samples
- No gradients needed after learnnig
- called only once — e oupus:

spectra, viewing geometry, o cloud parameters
surface information R :
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1. NN as forward model - lifecycle chain

How to get from RTM to NN for algorithms in S5P, S4, ...?
> General procedure to replace RTM of an inversion algorithm by a NN:

Training a NN from the RTM
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Evaluation of NNs

1. NN performances for different topologies

2. NN performances for different activation functions
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3. NN performances for different dataset samplings

Mean radiance for different activation functions
2000 epochs, 5-80-80-80-80-345 topology, min-max input- + output scaling
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4. S5P NN performance - clear-sky and fully-cloudy

Error histograms for different samplings of the training data set
2000 epochs, tanH activation, min-max input- + output scaling

5popa0. rel. error median
r

00-100-345 histogram surface height: 0.425 %
el. error median i i

00-100-345 uniform surface height: 0.891 %

=1 mmm 5-100-1008-345 histogram surface height

-1

+80-80-345 histogram surface height: | 0.4727 %

-8 -
|

5-100-100-345 uniform surface height
5-86-80-345 histogram surface height
5-80-80-345 uniform surface height

rel. error median
rel. error median

wuo e

0-80-345 uniform surface height: 0.8519 %

400080
Surtace newgnt asteabiien
[p——
.
300000 o
3 =
2 -
3 H
£ Eun
5
3
S
g o
2600000
" 1080 2008 000 4000 5808 8059, 7800 Baga.
iface hegans 07
100000

e
relative errror [%]

DLR Chart 6

Error Histograms for generated S5P spectra
10000 validation samples

f.l:lly-ctoudylrel. erro; ahsdrpediag:_;.:sz % == fully-cloudy

1200- clear-sky rel. error abs median: 0.6 m clear-sky
£ 1000
o
f=
e
S 800
o
(]
(=]
% 600
[ .
8
£ 400-
=
=

200

e hkkbiy

-16.0 7.5 5.0  -2.5 0.0 2.5 5.0 7.5 10.0
relative error [%]




Performance and Application

- With a proper configuration the NN can have
sufficient accuracy to replace the RTM
as forward model in the inversion algorithm

- The performance of the NN is orders of
magnitude faster compared to the RTM:
250000 spectra: RTM: 17h, NN 15s
- necessary for NRT retrieval
-> potential for improvements in the
inversion algorithm (e.g. global optimization)

« NN lifecycle chain allows training and
integration of different specialized NNs
for different scenarios

Cloud Type

Scene Type
clear cloudy
[
= Cloud Model
= == = A—— Cloud as Layers (CAL)
Clear Sky network Boundaries (CRB)

CRB network

CAL wat.e.r—ck_)l..td network  CAL ic;clo;; network
Specialized NNs for different cloud scenarios used

! for S5P
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Error Histograms for retrieved cloud top height

radiative transfer model (RTM) vs neural network (NN) as forward model -

1000 validation samples

1400 pTH rel. error abs median: 1.877 %

NN rel. error abs median: 2.459 %
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Error Histograms for retrieved cloud optical thickness

radiative transfer model (RTM) vs neural network (NN) as forward model - 10080 validation samples

RTM rel. error abs median: 8.886 %
500 NN rel. error abs median: 17.057 %
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Spectral fitting challenges

- With a neural network as forward model, a spectral fitting algorithm can be used for the retrieval

of the atmospheric parameters
- However, this is still challenging:

- spectral fitting problem is
generally ill-posed
- local minima

- real data contains noise in
measurements

- =2 ROCINN algorithm (part of
the operational S5P / current S4
CLOUD product) uses
Tikhonov Inversion,
which adds a regularization term
to the optimization problem

- For difficult cases, good a-priori

values for the retrieval parameters
are still important
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Residuals between forward model and input spectrum

surface height: 0.0638km, surface albedo: 0.342,
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Spectral fitting challenges - examples

‘stretched’ minimum:

Residuals between forward model and input spectrum
surface height: 0.756km, surface albedo: 0.976,
solar zenith angle: 72.182°, viewing zenith angle: 26.62°, relative azimuth angle: 36.6°
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2. NN for Direct Inversion

- NN for direct inversion can avoid some of the issues of the spectral fitting:

no fine adjustment of the retrieval algorithm (e.g. regularization parameter, tolerances for
convergence, etc.), all settings via the hyperparameters and training of the network

no a-priori necessary

only one call (iteration) per problem

- Input: spectra, viewing geometry, surface parameters, Output: cloud parameters
(topologies: NN as FM: 7-66-77-26-89-78-94-99-107, NN for direct inversion: 112-80-80-80-80-2)
- Evaluation on validation dataset:
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Best results for cloud top height: 0.96% vs. 2.46% (NN as FM), 1.88% (RTM as FM)
Improved results for cloud optical thickness: 11.92 % vs 17.06% (NN as FM), 8.89% (RTM as FM)
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Bayesian Neural Networks

- Drawback: No indication for the quality of the results for the direct inversion NN (,blackbox®)
- In contrast to the spectral fitting with e.g. iterations, convergence, residual, etc.

BNN Relative Errors

9 B ayes i an n eu ral n etW O r kS (B N N): 5 spectra components as input, (20, 20, 20) hidden layers, 10008 validation samples

cth rel. error abs median: 4.068 %  mmm cloud top height (cth)
cot rel. error abs median: 10.866 % . .
200 mm cloud optical thickness (cot)

- learns uncertainties in model parameters
- output is a probability distribution
- more complex and are harder to train
- use of autoencoders to reduce complexity
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Conclusions and Outlook

1. NN as forward models:
can improve speed of existing retrieval algorithms by orders of magnitude through
substitution of the radiative transfer model - near real time applicable
NN lifecycle chain offers training and integration of specialized NNs
many properties from classical retrieval algorithms are inherited:
retrieval diagnostics
difficulties with ill posed problems, local minima
performance allows for potential in inversion algorithm improvements

2. NN for direct inversion:
easy to apply, good initial performance, no a-priori needed
conventional NNs are ,black boxes®, no error quantification
BNNSs as a possibility to overcome this:
provide error quantifications
more complex and harder to train

> NNs for direct inversion, especially BNNs with error quantification, have great potential for
retrieving cloud properties for S4 / S5P as an alternative to the current forward model approach

Further investigations in hyperparameter selection and learning have to be made
Invertible neural networks (INN), that learn forwards and backwards and can also provide
distributions are another interesting approach that should be followed

For further questions, please contact me: Fabian.Romahn@dir.de
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