# **LPVE23 - WORKSHOP ON LAND PRODUCT** VALIDATION AND EVOLUTION

# Validation of the Copernicus Sentinel-2 Sen2cor Scene Classification Products

Avi Putri Pertiwi<sup>(1)</sup>, Kevin Alonso<sup>(2)</sup>, Bringfried Pflug<sup>(1)</sup>, Jérôme Louis<sup>(3)</sup>, Francesco Pignatale<sup>(4)</sup>, Silvia Enache<sup>(5)</sup>, Rosario Quirino Iannone<sup>(2)</sup>, Valentina Boccia<sup>(6)</sup>, Ferran Gascon<sup>(6)</sup> (1) German Aerospace Centre (DLR), Remote Sensing Technology Institute, Berlin, Germany; (2) RHEA for ESA ESRIN, Frascati, Italy; (3) Telespazio France - A Leonardo / Thales Company, Toulouse, France; (4) Telespazio Germany – A Leonardo / Thales Company, Darmstadt, Germany; (5) CS Group, Toulouse, France; (6) European Space Agency (ESA) ESRIN, Frascati, Italy

## **INTRODUCTION**

- Sen2cor processed Sentinel-2 from the Top-Of-Atmosphere (TOA) Level 1C products to Level 2A products in the form of surface reflectance (Bottom-of-Atmosphere, BOA), Aerosol Optical Thickness (AOT), Scene Classification (SCL), and Water Vapor (WV)
- We investigated the performance of Sen2Cor 2.11 SCL on Sentinel-2 Processing Baseline (PB) 04.00 products (25) January – 5 December 2022) in separating clear pixels from cloudy and shadowed pixels



- In order to generate reference pixels, we utilized **Sen2val** tools that were developed within the frame of the Level-2A Expert Support Laboratory (ESL) of the Sentinel-2 Optical Mission Performance Cluster (OPT-MPC)
- A time series of scenes from five globally distributed test sites in Germany, Spain, United States, Russia, and Indonesia were selected during the span of the PB 04.00
- The criteria of scene selection are cloud cover nearest to 20% and no data pixels of less than 30%

## **METHODOLOGY**

## Validation basis

- Sentinel-2 band composites:
  - Red (B4) green (B3) blue (B2): to help differentiate vegetation, dark features, and shadows
  - SWIR (B12) SWIR (B11) NIR (B8A): to help differentiate water, clouds, and snow
  - NIR (B8A) NIR (B6) NIR (B5): to help differentiate vegetation, clouds, and shadows
- Pixel spectral profiles

## L1C cirrus band

### Stratified random sampling Accuracy assessment

- Randomized subset selection
- Drawing polygons of homogeneous pixels to assign them into an SCL class
- Number of labeled pixels per class controlled to be stratified

- Confusion matrix
- Overall accuracy (OA)
- Producer and User accuracy (PA, UA)

· CESS

• Omission and Comission error (OE, CE)



## RESULTS

SCL accuracy scores are reported separately for **products without** snow cover and with snow cover

### Products without snow cover

|                          | Clear  | Cloud  | cum  | 110 | <u>CE</u> | $\bigcirc$     |
|--------------------------|--------|--------|------|-----|-----------|----------------|
|                          | pixeis | pixeis | Sum  | UA  | 0E        | UA             |
| Clear pixels             | 54%    | 2%     | 56%  | 97% | 3%        | 90%            |
| Cloud pixels             | 9%     | 35%    | 44%  | 80% | 20%       |                |
| Sul                      | m 63%  | 37%    | 100% |     |           |                |
|                          | 0.00/  | 050/   |      |     |           | Balanceo       |
| PA                       | 86%    | 95%    |      |     |           | OA             |
| OE                       | 13.6%  | 5.1%   |      |     |           | 92%            |
| Products with snow cover |        |        |      |     |           |                |
|                          | Clear  | Clouds |      |     |           |                |
|                          | pixels | pixels | sum  | UA  | CE        | OA             |
| Clear pixels             | 45%    | 36%    | 81%  | 55% | 45%       | 63%            |
| Clouds pixels            | 1%     | 18%    | 19%  | 95% | 5%        |                |
| su                       | n 46%  | 54%    | 100% |     |           |                |
| PA                       | 98%    | 33%    |      |     |           | Balanced<br>OA |
|                          |        |        |      |     |           |                |

### **Class omission error**



### **Class commission error**





### Committed cloud high probability pixels are actually vegetation 0.0% cloud shadows 5.0% 10.0% 1⁄5.0% dark area pixels 20.0% thin cirrus foud medium probability -Bandung -Murcia —Yakutsk - winter

## CONCLUSIONS

.9%

Sen2cor performed SCL on scenes without snow cover relatively  $\bullet$ better than on scenes with snow cover

66.8%

- On snow covered scenes, thin cirrus pixels are often misclassified as  $\bullet$ snow due to **similarity in spectral profiles**
- Cloud shadow pixels on snow are also often misclassified as clear pixels due to its **brighter reflectance compared to cloud shadow on** land without snow cover
- Balanced overall accuracy of scenes without snow cover is 92%, as  $\bullet$ for scenes with snow cover **77%**



12 14 June 2023 | ESA-ESRIN | Frascati (Rome), Italy





ded by the EU and ESA