Looking Back: Lessons Learned from CALIPSO Validation

> Dave Winker, NASA Langley Res Ctr

EarthCARE Science and Validation Workshop, 13-17 November 2023

- Verify instrument performance (w.r.t. Level 1 data)
 - calibration, SNR, linearity, transient recovery
- Verify geolocation
 - pointing, altitude registration
- Quantify the accuracy and precision of Level 2 science data products
 - identify sources of random errors and biases
- Examine underlying assumptions in retrieval algorithms
 - S_a , S_c , spectral independence of cirrus backscatter
- Validate uncertainty estimates !

Validation Resources

CALIPSO Science Validation Plan PC-SCI-501

Dave Winker and Chip Trepte NASA Langley Research Center, Hampton, Virginia

Jacques Pelon and Anne Garnier Institut Pierre Simon LaPlace, Paris, France

Tom Kovacs Hampton University, Hampton, Virginia

> Version 4.0 December 2004

- Ground-based networks
 - Aeronet
 - Earlinet, ADnet
- Satellite comparisons
 - MODIS, MLS, AIRS
 - SAGE-III
- Targeted, aircraft campaigns
 - LaRC HSRL (King Air)
 - NOAA ESRL (Cessna)
 - NASA ER-2
- Large field campaigns
 - NASA AMMA (Cape Verde)
 - SAMUM
 - CIRCLE-2
 - NASA TC⁴ (Costa Rica)
 - ASTAR/PAM-ARCMIP
 - ARCTAS/PolarCat
 - SEAC4RS
 - etc

Jun 2006 - 20012 Jul-Aug 2006-2009 Aug 2006, ORACLES

Aug 2006 2006, 2008 May 2007 Jul-Aug 2007 April 2007/09/11/12 April, July 2008 Aug-Sep 2012

- Discovered ranging error
 - Speed of light \neq 3.000E+8 m/s
 - Required a change to payload software (~ 1 week)

Discovered intra-orbit drifts in 1064 channel calibration

– Not fixed until 2014

Discovered excess PMT noise in South Atlantic Anomaly

- Not seen during LITE (260 km orbit altitude)
- Required modification of 532 nm calibration algorithm

- Early validation of Level 1 profiles was critical
- Dedicated airborne campaign in Aug 2006 (CC-VEX)
- Payload on NASA ER-2:
 - Goddard Cloud Profiling Lidar (CPL)
 - JPL W-band radar (CRS)
 - MODIS Airborne Simulator (MAS)
- Initial CALIOP Level 1 validation objectives:
 - Sanity check on Level 1 lidar profiles
 - Do they 'look right'? Unexpected artifacts?
 - Verify predicted detection sensitivity
 - A first check on calibration

Airborne validation of spatial properties measured by the CALIPSO lidar

Matthew J. McGill,¹ Mark A. Vaughan,² Charles R. Trepte,³ William D. Hart,⁴ Dennis L. Hlavka,⁴ David M. Winker,³ and Ralph Kuehn²

Received 9 April 2007; revised 24 June 2007; accepted 16 July 2007; published 17 October 2007.

Long term HSRL campaign: Level 1, Level 2

Characterization of CALIOP detection sensitivity:

- Average HSRL to CALIOP resolution
- Aggregate measurements of similar aerosol type
- Compare histogram of HSRL bins inside CALIOP layer with histogram of all HSRL bins

S_a: HSRL vs. CALIOP:

- One of several lidar networks
 - > 20 stations
- Many 355 nm Raman lidars
- A few 532 nm Raman lidars
- Routine observations over many years
- Issues:
 - Requires time to acquire a sufficient collection of matched observations
 - Spatial mismatches with CALIPSO
 - Blockage by clouds
 - Raman is (was?) mostly night-only
 - Comparison methodology: Perrone et al (2011)

Even with > 400 Aeronet sites, need to accumulate matched samples over several years

Omar et al, 2012: 1081 samples over 4 years (600 cloud-free) Typically, only one or two usable samples/station/year In addition to CALIOP retrieval errors, AOD biases could be due to: Spatial mismatch Topography

elevation at Aeronet site higher or lower than CALIOP groundtrack Aeronet cloud contamination

- The goal is 'global validation'
 - Field campaigns are expensive and rare
 - Ground networks have limited coverage
- Satellite intercomparisons
 - Depending on parameter and sensor, varies from true validation to 'sanity check'
- Consistency checks (does it 'look right')
 - Can be useful, especially in the early days

- IIR has been very useful for validating CALIOP cirrus retrievals:
- Constraints on cirrus lidar-ratio LUT
- Identified biases in daytime constrained cirrus retrievals
- 'Validated' extinction retrieval uncertainty estimates
- Resolved MODIS-CALIOP cirrus OD discrepancy:
 - IIR visible OD more accurate than MODIS (till C6)

cirrus OD retrievals IIR vs CALIOP constrained (nighttime)

Green: Mean CALIOP-IIR COD difference Red: RMS CALIOP-IIR COD difference Purple: RMS CALIOP COD uncertainty estimates Light Blue: RMS of IIR COD uncertainty

Visual inspection can identify non-physical results

- Cloud ice-water fraction vs. temperature relations should be stable over time
- A drift in phase vs temperature relationship may indicate drifts in polarization calibration

- Never as much high quality validation data as you want (need)
 - Must be creative
- Co-located, accurate, airborne profiles are ideal, but:
 - Airborne campaigns are rare, and regional
 - Also need long-term measurements (ground sites, 'dedicated' aircraft)
- Often no validation data available for remote regions, so must rely on:
 - Consistency checks
 - Statistical comparisons against previous datasets (CALIOP)
 - Evaluation using models (if they are good enough)
- Validation of uncertainty estimates is also important
 - Value of assimilation improves with good estimates of uncertainties

- Never as much high quality validation data as you want (need)
 - Must be creative
- Co-located, accurate, airborne profiles are ideal, but:
 - Airborne campaigns are rare, and regional
 - Also need long-term measurements (ground sites, 'dedicated' aircraft)
- Often no validation data available for remote regions, so must rely on:
 - Consistency checks
 - Statistical comparisons against previous datasets (CALIOP)
 - Evaluation using models (if they are good enough)
- Validation of uncertainty estimates is also important
 - Value of assimilation improves with good estimates of uncertainties
- Don't forget to intercompare results from different algorithms
 - Single-instrument vs. Synergistic
 - European vs Japanese

We're looking forward to the launch of EarthCARE ...

Good Luck!