

aboratoire '**Optique** Atmosphériau

Synergetic retrieval from multi-instrument measurements for extended aerosol and surface characterisation in global scale and at high temporal resolution

Pavel Lytvynov^a, Oleg Dubovik^{a,b}, Cheng Chen^a, Siyao Zhai^a, Christian Matar^a, David Fuertes^a, Anton Lopatin^a, Tatyana Lapyonok^a, Verena Lanzinger^c, Lukas Bindreiter^c, M. Dornacher^c, A. Lehn^c, Daniele Gasbarra^d, Elody Fluck^d, Alexandru Dandosci^d, and Christian Retscher^d

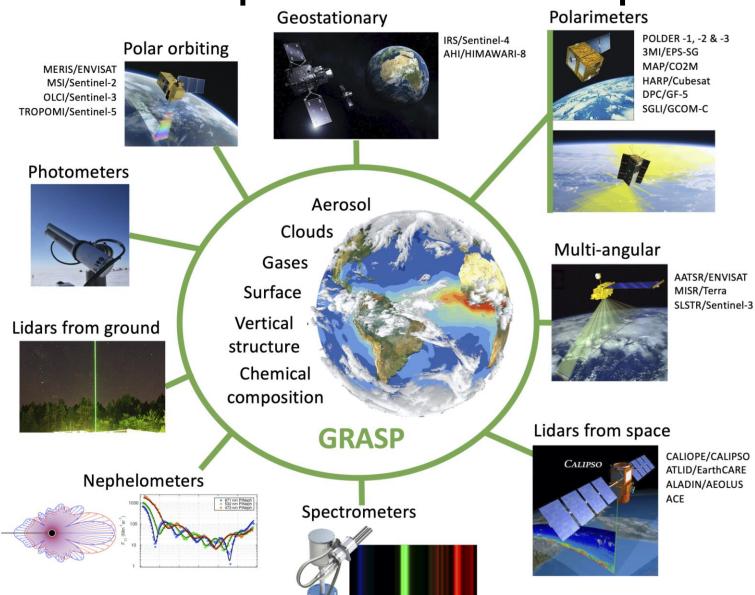
Aerosol in different applications

	Extended aerosol characterization						
Atmospheric studies and applications		1. Extended optical properties				2. Spatial	3. Temporal
	AOD	SSA	Size (AExp)	Vertical profile	Chemistry	resolution	resolution
Aerosol ECVs (GCOS-245)	Х	Х	Х	Х	-	A few km or more Global	Daily or monthly
Air quality monitoring	Х	Х	Х	Х	X	The finer is better (a few meters)	Hourly or better
Aerosol dynamic, aerosol- cloud interaction etc	Х	Х	Х	Х	X	Fine and moderate	Hourly or better
Global and regional climate models	Х	Х	Х	Х	X	From a few meters to	Hourly, Daily
Aerosol as auxiliary product for Atmospheric and surface studies	Х	Х	X	X	-	hundred km Global	From Hourly, to Monthly

Aerosol characterization from space		Extended properties					
		AOD	Extended optical properties	Spatial resolution	Temporal resolution		
 Single angle Observation: moderate or coarse spatial resolution wide swath 		MODIS-like	+	Rather not	Moderate		
		TROPOMI-like (wide spectral range : UV-SWIR)	+	Absorption, size, vertical profile with moderate accuracy	Rather coarse	Daily	
 2. Single angle obs. (Sentinal-2 like): - high spatial resolution - narrow swath (~ 200 km or less) 			+	Rather not	High Spatial	Few days per week	
3. Geostationary (Sentinel-4, FCI etc)			+	Limited	Rather	High temporal	
4. Multi-angular polarimeters			+	High accuracy	coarse	Daily	
5. Active	Spac	e LIDAR	+	Vertical profile	-	-	
TIR sensors		ensors	Dust AOD	Dust chemistry	Coarse	Daily	

Ideal single instrument has never existed and, probably, will never exist !

Solution: Multi-instrument synergy


Aerosol characterization from	Optica	al properties	Spatial	Temporal resolution
multi-instrument synergy	AOD	Extended properties	resolution	
LEO + GEO +	+	+	+	+
High spatial resolution +				
Polarimeters				
+ etc				

Requirements on the retrieval algorithms for synergy:

- 1. Algorithm should be based on advanced inversion approach and adaptable flexible forward models.
- 2. Algorithm should be able to account diverse measurements from different instruments.
- 3. Algorithm should be able account for multi-temporal measurements (multi-pixel retrieval approach).

GRASP: Generalized Retrieval of Atmosphere and Surface Properties

- Full synergetic retrieval from different spaceborne instruments is impossible without accounting for multitemporal diverse measurements!
- GRASP algorithm multipixel (in particular, multitemporal) approach is very suitable for synergetic purposes

Synergetic retrieval with GRASP algorithm

2. Synergetic retrieval from **satellite and** ground-based measurements:

eesa eo science for society ≡ Q ∰ Pavel Litvinov et al. FR, 2022 Synergetic Retrieval from GROund based and SATellite measurements for surface characterization and validation (GROSAT) cloudflig GRASP-SAS (FR) **eesa** www.grasp-open.com/products/grosat-data-release/ < GRASP 3. Synergetic retrieval from **multi-mission** space-borne instruments: **eesa** eo science for society Ê Q Pavel Litvinov et al. FR, 2023

Synergetic retrieval from multi-mission space-borne measurements for enhancement of aerosol characterization (SYREMIS)

1. Coarse and fine spatial resolution:

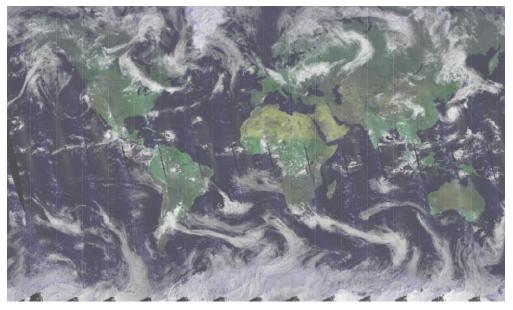
PRISMA + S5P demonstration for COVID-19

studies _{GRASP-SAS (FR)} Cheng Chen and Pavel Litvinov et al. JGR, 2024 (under review)

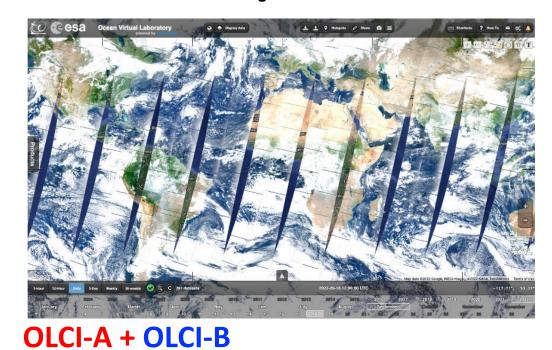
eo science for society

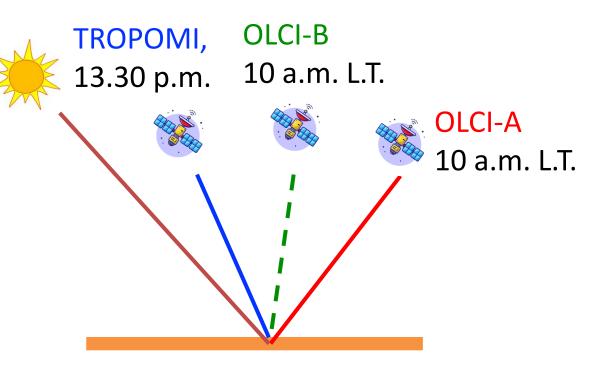
_ = Q ∰

SENTINEL-5P+ INNOVATION - THEME 5, AEROSOL OPTICAL DEPTH (AOD) + BRDF

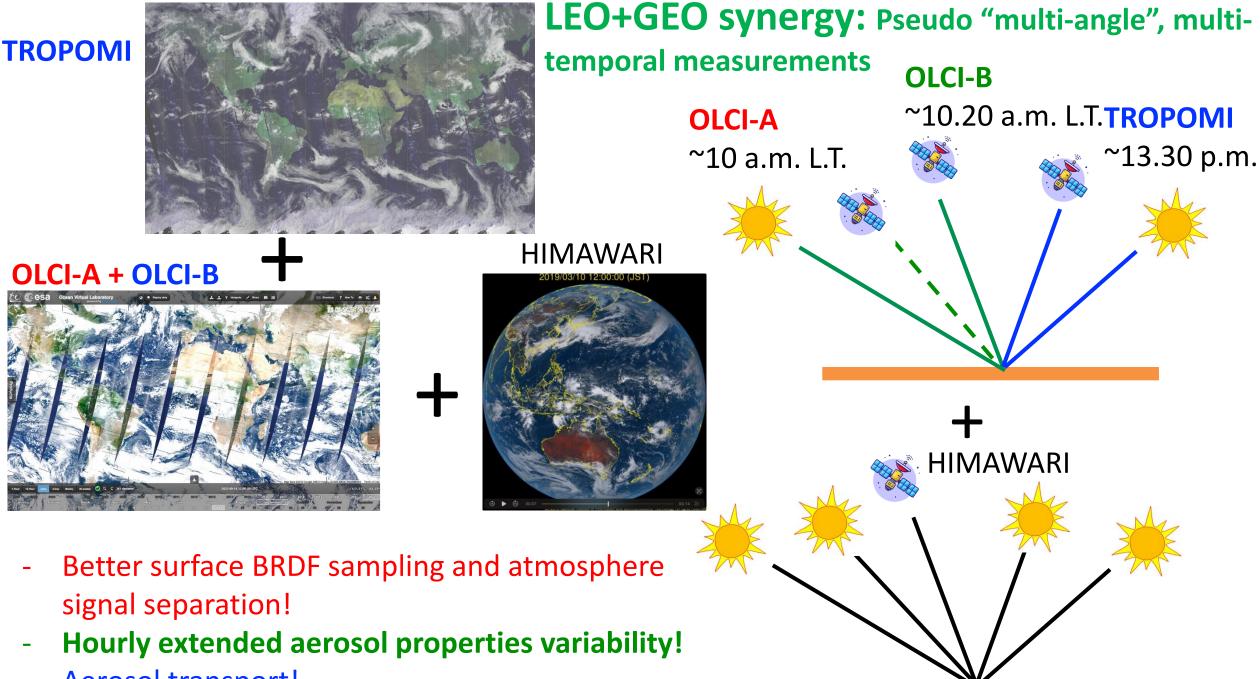

GRASP-SAS (FR) Pavel Litvinov and Cheng Chen et al. RSE, 2024 (under review)

GRASP algorithm multi-pixel (in particular, multi-temporal) approach is very suitable for synergetic purposes


GRASP multi-instrument synergetic retrieval:


Satellites	Description	cloudflight Cesa					
Sentinel-3A /OLCI and Sentinel-3B/OLCI	 Polar-orbiting, global coverage One observation per pixel Moderate spatial resolution Radiance measurements in VIS and NIR spectral range 						
Sentinel-5p/TROPOMI	 Polar-orbiting, global coverage, from 1 to a few observations per day Hyperspectral measurements in UV, VIS, NIR, SWIR spectral range 						
Himawari/AHI	 Geostationary. Coverage area: Asia Every 15 min daily measurements Radiance measurements in VIS, NIR and SWIR spectral range 						
		i. Multi-spectr	al	ii. Multi- angular	iii. Multi-	iv. Multi -	
SYREMIS Synergy	UV	VIS - NIR	SWIR		Polarization	Temporal	
S3A/OLCI + S3B/OLCI + TROPOMI + HIMAWARI	+	+	+	+ Quasi multi- angular	_	+	

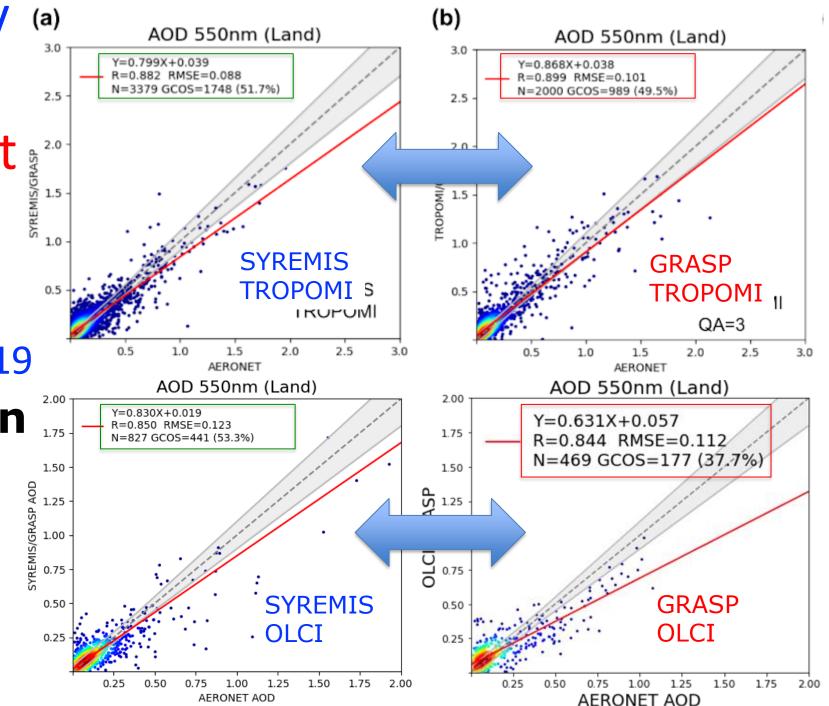
TROPOMI

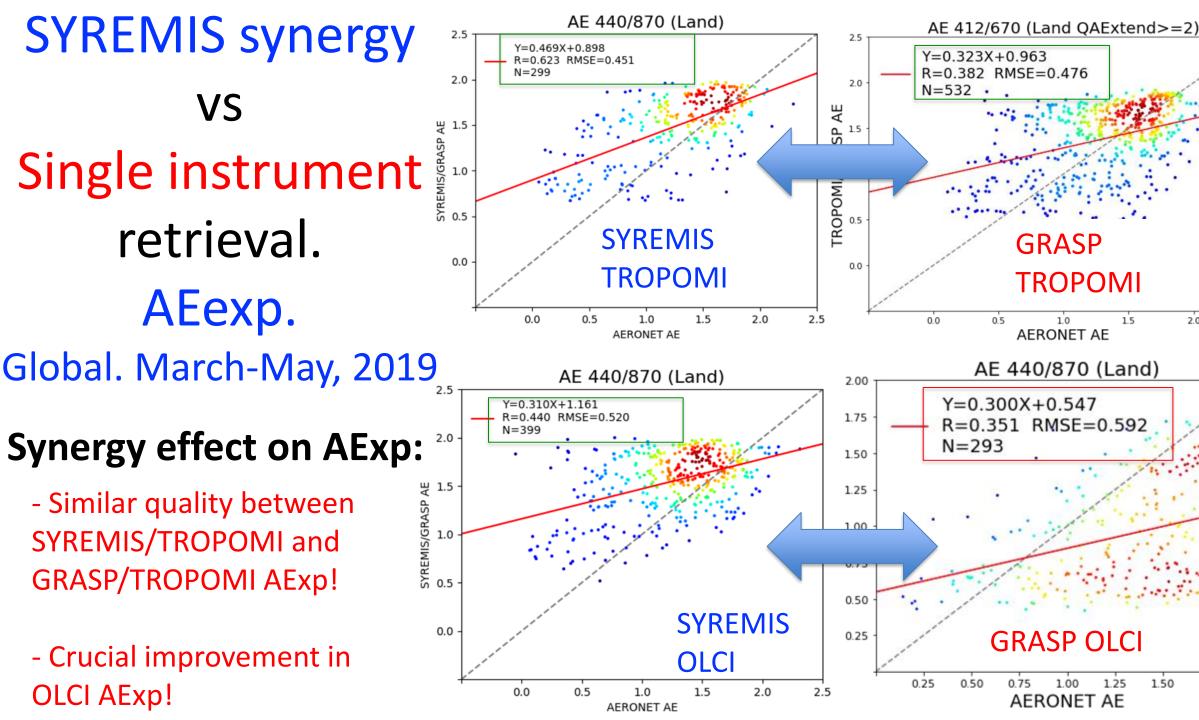


LEO synergy: Pseudo "multi-angle"

- Better surface BRDF sampling and atmosphere signal separation!
- Few measurements per day!
- Extended spectral range

Multi-temporal measurements should be accounted for !


Aerosol transport!

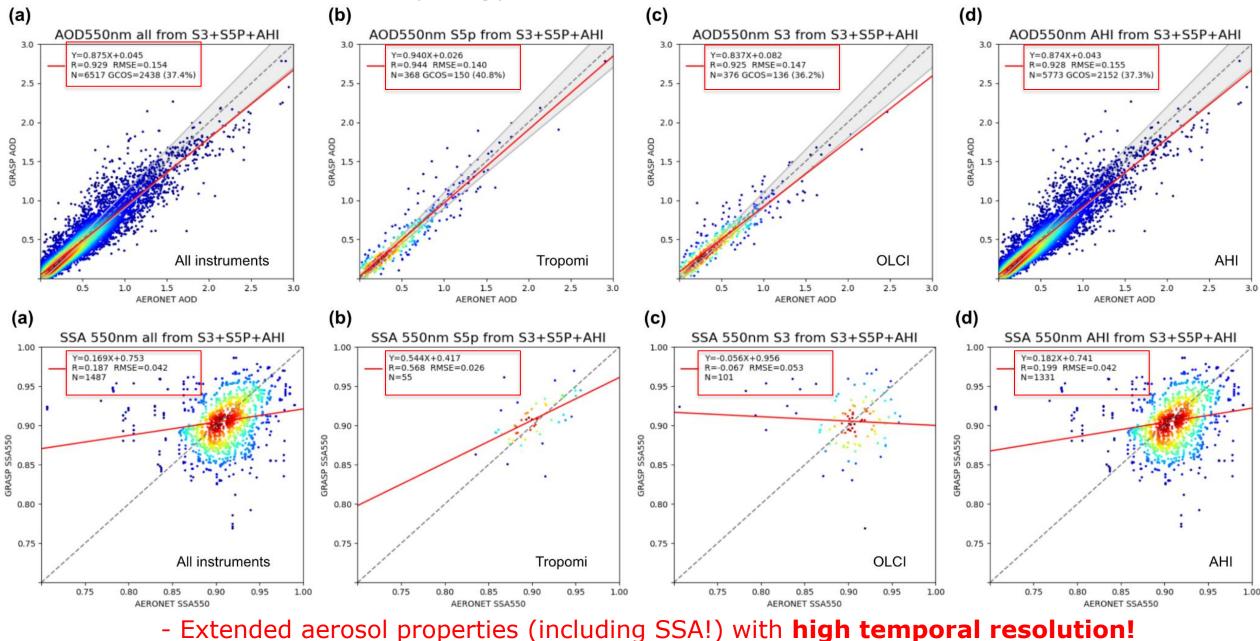

SYREMIS synergy (a) VS Single instrument retrieval. AOD.

Global. March-May, 2019 Synergy effect on AOD:

- Clear improvements in TROPOMI AOD!

- Crucial improvement in OLCI AOD!

2.0

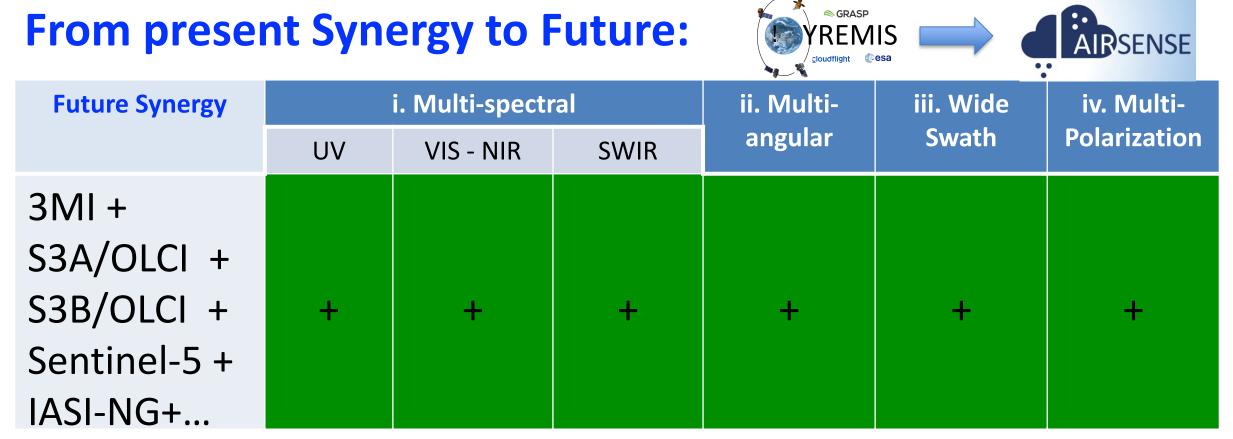

1.50

1.75

2.00

2.5

SYREMIS LEO+GEO synergy: TROPOMI + OLCI-A + OLCI-B + HIMAWARI


- Consistent retrieval for all instrument in the synergy!

YREMIS/GRASP synergetic retrieval

cloudflight 💦 🏀 esa

1. Clear improvement of aerosol retrieval

- 2. The instrument with richest information content is a "driver" of synergetic retrieval:
 - S5p/TROPOMI in SYREMIS satellite constellation has richest information content providing information about aerosol size and absorption properties
 - The best SYREMIS/GRASP retrieval can be achieved when the "weight" of S5p/TROPOMI measurements in the synergy is requested to be higher than OLCI and HIMAWARI
 - Transition of information from the instruments with richest information (TROPOMI) to the instruments with lower one (OLCI, HIMAWARI)

Expected benefits of synergetic retrieval :

- 1. Enhanced characterization of such aerosol parameters as spectral AOD but also SSA and aerosol size characteristics etc
- 2. Improved global coverage and temporal resolution of the aerosol dataset.
- 3. Consistent retrieval from all satellites from synergetic constalation
- 4. New possibility for global aerosol sources identification and transport monitoring.