# SUREDOS24 Super-Resolution and Downscaling for EO and Earth Science A Methodology Based on **AI Modules for Super-Resolution of Sentinel-5P** Level 1B Data and entinel-3 Leve

TOR VERGATA

Davide De Santis, Daniele Settembre, Martina Frezza and Fabio Del Frate

Tor Vergata University of Rome Civil Engineering and Computer Science Dept. Earth Observation Laboratory

davide.de.santis@uniroma2.it

30 May 2024 | ESA-ESRIN | Frascati (Rome), Italy

#### SUREDOS24

## Outline

- Motivation and Scope
- Use Case 1: Sentinel-5p and PRISMA L1 data
  - Methodology
  - Preliminary results
- Use Case 2: Sentinel-3 and Landsat L2 LST data
  - Methodology
  - Preliminary results
- Take home messages and next steps

# Outline

- Motivation and Scope
- Use Case 1: Sentinel-5p and PRISMA L1 data
  - Methodology
  - Preliminary results
- Use Case 2: Sentinel-3 and Landsat L2 LST data
  - Methodology
  - Preliminary results
- Take home messages and next steps

### Motivation

TOR VERGATA UNIVERSITÀ DEGLI STUDI DI ROMA

Topic: Super Resolution of HF (high frequency) and LR (low resolution) data to generate "corresponding" LF (low frequency) and HR (high resolution) data



Scarce literature (very limited number of publications)

Lack of dataset

Mostly with simulated data

> Constrains in the replicability/scalability (e.g. dependence of LF and HR data in input)

#### Scope

**TOR VERGATA** UNIVERSITÀ DEGLI STUDI DI ROMA

Design and first evaluation of a methodology for Super Resolution of HF (high frequency) and LR (low resolution) data to generate corresponding LF (low frequency) and HR (high resolution) data



and -

#### Scope





#### SUREDOS24

# Outline

- Motivation and Scope
- Use Case 1: Sentinel-5p and PRISMA L1 data
  - Methodology
  - Preliminary results
- Use Case 2: Sentinel-3 and Landsat L2 LST data
  - Methodology
  - Preliminary results
- Take home messages and next steps

## Sentinel-5P and PRISMA Mission Overview



PRISMA product:



240 Bands covering the VNIR and SWIR spectral regions (400 – 2500 nm) Spatial res: 30 m

### **TROPOMI product:**



Band 8 480 spectral channels (2343 – 2389 nm) Spatial res: 5.5 x 7 km (since August 2019)

| Parameter                  | VNIR channel        | SWIR channel | Pan channel |
|----------------------------|---------------------|--------------|-------------|
| Spectral range             | 400-1010 nm         | 920-2505 nm  | 400-700 nm  |
| Spectral resolution (FWHM) | ≤ 12 nm             | ≤ 12 nm      | -           |
| Spectral bands             | 66                  | 171          | 1           |
| Swath width                | 30 km (FOV = 2.77°) |              |             |
| Spatial resolution         | 30 m                |              | 5 m         |

| Spectral ranges | Number of<br>channels | Spectral resolution |
|-----------------|-----------------------|---------------------|
| 270-495 nm      | 1200                  | 0.55 nm             |
| 710-775 nm      | 600                   | 0.55 nm             |
| 2305-2385 nm    | 800                   | 0.25 nm             |

### Methodology - Colocation





Colocation (Spatial-Temporal) Selection of PRISMA L1 and TROPOMI L1B (Band 8) data according to spatial and temporal criteria:

- Spatial overlap of acquisitions

- Acquisition with a maximum time interval of one hour

### PRISMA and TROPOMI colocation

-



|         | Acquisition day and time |
|---------|--------------------------|
| PRISMA  | 2023-03-22 10:30:37      |
| TROPOMI | 2023-03-22 10:41:10      |

#### Site: Milano

The states



#### Methodology – Dataset generation





Upsampling, from original resolution to 300 m, using bicubic interpolation method Downsampling, from original resolution to 300 m, using average interpolation method

### Neural Network Design

C. A. Starter



are stated



### Preliminary results





Max CH<sub>4</sub> absorbance for retrieval (with PRISMA data): 2349.7915 nm

### Preliminary results





### Preliminary results PRISMA in Sentinel-5P Band8



Performances over urban areas seem more accurate than over vegetated areas

#### SUREDOS24

## Outline

- Motivation and Scope
- Use Case 1: Sentinel-5p and PRISMA L1 data
  - Methodology
  - Preliminary results
- Use Case 2: Sentinel-3 and Landsat L2 LST data
  - Methodology
  - Preliminary results
- Take home messages and next steps

## Sentinel-3 and Landsat Overview

#### Sentinel-3 instruments:

- OLCI (Ocean and Land Colour Instrument);
- STM (Altimetry Surface Topography Missi on);
- SLSTR (Sea and Land Surface Temperature Radiometer)- provide a reference Land and Sea Surface Temperature dataset.

- Swath: 1400 km
- Revisit time:daily
- Spatial resolution: **1 km**

#### Landsat 8/9 instruments:

 OLI (Operational Land Imager)visible, near-infrared, shortwaveinfrared bands;

TOR

- TIRS (Thermal Infrared Sensor) thermal infrared radiation.
  - Swath: 185 km
  - Revisit time:together, Landsat 8 and Landsat 9 provide 8-day coverage.
  - Spatial resolution: 30m (the thermal bands are re-sampled from 100 m)

### Methodology



Neural Network Dataset Design generation

Colocation (Spatial-Temporal)

Constant of

### Methodology- Dataset generation







- Capture temperature seasonality throughout the year;
- Maximum time difference of **one hour** between the two data.



#### **Preprocessing:**

#### LANDSAT L2:

- Cloud mask application and derive LST filtered pixels;
- Resampling from 30 to 300 m;

#### SENTINEL-3 L2:

- Cloud mask application and derive LST pixels;
- Upsampling to the same spatial resolution of Landsat resampled data (300m with bilinear interpolation)

### Methodology- Neural Network Design





### Results- Scatterplot in urban area

Landsat 8/9 resampled vs S3 upsampled

RMSE = 4.44 °C



#### Landsat 8/9 resampled vs SR



R

UNIVERSITÀ DEGLI STUDI DI ROM



#### Results- Scatterplot in vegetation area

#### Landsat 8/9 resampled vs S3 upsampled

RMSE = 3,92



#### Landsat 8/9 vs SR

TOR

VER UNIVERSITÀ DEGLI STUDI DI

RMSE = 3,09













2024/04/04 LST (°C) 

## Outline

- Motivation and Scope
- Use Case 1: Sentinel-5p and PRISMA L1 data
  - Methodology
  - Preliminary results
- Use Case 2: Sentinel-3 and Landsat L2 LST data
  - Methodology
  - Preliminary results
- Take home messages and next steps

### Take home messages and next steps

#### TAKE HOME

> A simplified SR approach can be designed and applied to S5P L1 and S3 L2 data using MLP

- > Preliminary results shown good approximation of HR and LF data starting from LR and HF
- > Performance on urban areas seems more accurate than over vegetation

#### **NEXT STEPS**

- > Improve spatial resolution in output (e.g. up to 100 m for LST) --> De Santis et al., in prep
- > The generated HR and LF data can be exploited for real application such as:

> Methane retrieval with generated PRISMA data

> Urban heat island monitoring with generated Landsat data

TOR V

# SUREDOS24 Super-Resolution and Downscaling for EO and Earth Science A Methodology Based on **Al Modules for Super-Resolution of Sentinel-5P** Level 1B Data and entinel-3 Lev

## THANK YOU! Any question?

30 May 2024 | ESA-ESRIN | Frascati (Rome), Italy

TOR VERGATA UNIVERSITÀ DEGLI STUDI DI ROMA

Davide De Santis, Daniele Settembre, Martina Frezza and Fabio Del Frate

Tor Vergata University of Rome Civil Engineering and Computer Science Dept. Earth Observation Laboratory

davide.de.santis@uniroma2.it

#### Methodology – Dataset generation S5P with PRISMA



## Random example over an urban area

TOR

### Extra (some literature)



Generating Daily Land Surface Temperature Downscaling Data Based on Sentinel-3 Images

https://www.mdpi.com/ 2072-4292/14/22/5752 Model-Based Super-Resolution for Sentinel-5P Data (Carbone et al.,)

https://ieeexplore.ieee.org /document/10499875

Assessment of High-Resolution LST Derived From the Synergy of Sentinel-2 and Sentinel-3 in Agricultural Areas

https://ieeexplore.ieee.org /document/10327786 UNDERSTANDING THE VALUE OF HYPERSPECTRAL IMAGE SUPER-RESOLUTION FROM PRISMA DATA

https://ieeexplore.ieee.org /abstract/document/10283 013

Optically Enhanced Super-Resolution of Sea Surface Temperature Using Deep Learning https://ieeexplore.ieee.org /document/9487005 Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net https://ieeexplore.ieee.org /document/8953470