CNN-based retrieval of Arctic sea ice information from SAR and Passive Microwave

Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, Ninna Juul Ligaard, Matilde Brandt Kreiner

-5

Sentinel-1 HH Sep. 9th, 2021, 04:51 UTC

Motivation for SAR-based sea ice retrievals

20

0

40

OSI SAF (OSI-408-a) Sea Ice Concentration (SIC) Sep. 9th, 2021, 12:00 UTC

Supervised deep learning and ice charts as label data

Supervised learning algorithms require label/"groundtruth" data for training. We use manually drawn **regional ice charts** as the "ground-truth".

Advantages:

- Abundance
- Geographical/Seasonal coverage
- Often drawn on the basis of a SAR image, enabling the generation of a timely matchup training dataset

Disadvantages:

- Human subjectivity
- Uncertainty estimates are not provided
- Large polygons (relative to SAR resolution)

Wulf et al., "Pan-Arctic Sea Ice Concentration from SAR and Passive Microwave" DOI: <u>https://doi.org/10.5194/egusphere-2024-178</u>

Ice Free 1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10 Sea Ice Concentration

Thanks a lot to the **Canadian Ice Service** and the **Greenland Ice Service** at DMI for providing the ice charts for this dataset!

Buus-Hinkler et al., "Al4Arctic Sea Ice Challenge Dataset", DOI: <u>https://doi.org/10.11583/DTU.c.6244065.v2</u>

DMI-ASIP SIC retrieval and uncertainty estimation

The sea ice concentration (SIC) parameter in the ice charts is given as discrete increments *I* from 0-100%, in steps of 10%, giving a total of k=11 SIC increments,

Given an input \mathbf{x} , DMI-ASIP is trained to output a *k*-dimensional vector for each grid point with non-normalized scores for each increment class,

 $z = [z_1, z_2, ..., z_k].$

The non-normalized scores \mathbf{z} are passed through the softmax function σ to obtain class "probabilities" \mathbf{p} ,

ρ=σ(z)

It is empirically known that modern neural networks tend to be poorly calibrated, i.e. p° can not be directly interpreted as posterior probabilities, and thus does not reflect the predictive uncertainty of the trained model, hence the need for calibration,

$p = \sigma(Wz + b)$

Parameters W and b are learned on a held-out validation dataset. Given a well-calibrated model output, the SIC and the associated uncertainty can be computed as a weighted average and a weighted standard deviation of the 11 increments I, respectively, with weights given by their respective class probabilities p,

$$SIC = \sum_{i}^{k} \hat{p}_{i}I_{i} \qquad STD_{SIC} = \sqrt{\sum_{i}^{k} \hat{p}_{i}(I_{i} - SIC)^{2}}$$

The Danish

Meteorological

DMI-ASIP SIC Output Example

DMI-ASIP uncertainty (st. dev.)

DMI-ASIP SIC

Sentinel-1 HH with DMI-ASIP SIC and ice edge superimposed

Copernicus Marine Service

The Danish

Meteorological Institute

Pan-Arctic comparison with OSI-408-a

Operational NRT and reprocessed (2014-2024) datasets

DMI-ASIP SIC, 7-day mosaics for 2020-2021

Thanks for listening!

Dataset

Buus-Hinkler, J., Wulf, T., Stokholm, A. R., Korosov, A., Saldo, R., Pedersen, L. T., Arthurs, D., Solberg, R., Longépé, N., Kreiner, M. B.: Al4Arctic Sea Ice Challenge Dataset, <u>https://doi.org/10.11583/DTU.c.6244065.v2</u>, 2022.

Wulf, T., Buus-Hinkler, J., Singha, S., Shi, H., and Kreiner, M. B.: Pan-Arctic Sea Ice Concentration from SAR and Passive Microwave, EGUsphere [preprint], <u>https://doi.org/10.5194/egusphere-2024-178</u>, 2024.

DMI-ASIP SIC evaluation against 50 regional ice charts

Ice Chart

Ice Chart May 12th, 2021

DMI-ASIP integration of Radarsat Constellation Mission obs.

DMI-ASIP Sea Ice Stage of Development (SoD)

Young Ice

180*

New Ice

Thick FY Ice

120'E 60'E

Thin FY Ice [%] The Danish

Meteorological Institute

80

60

40

20

New Ice (< 10 cm)	New Ice, Nilas, Ice Rind
Young Ice (10 cm - 30 cm)	Young Ice, Grey Ice, Grey - White Ice
Thin FY Ice (30 cm - 70 cm)	Thin FY Ice Stage 1, Thin FY Ice Stage 2
Thick FY Ice (70 cm - 200 cm)	Thick FY Ice, Medium FY Ice
MY Ice (> 200 cm)	Second Year Ice, MY Ice
Glacier Ice	Glacier Ice

DMI-ASIP SoD comparison with ice charts

180°

60°N

50°N

40°N

120°E

60°8

60°W

Sentinel-1 HH April 11th, 2021

Ice Chart	DMI-ASIP
100% SIC	95% SIC
70% MY Ice	70% MY Ice
30% Thick FY Ice	30% Thick FY Ice

100% SIC	100% SIC
100% Thick FY Ice	80% Thick FY Ice
-	15% MY Ice
-	5% Thin FY Ice

90% SIC	95% SIC
20% MY Ice	20% MY Ice
80% Thick FY Ice	35% Thick FY Ice
-	10% Thin FY Ice
-	20% Young Ice
-	15% New Ice

DMI-ASIP SoD comparison with ice charts

 The Danish
Meteorological Institute

Sentinel-1 HH

Ice Chart	DMI-ASIP
100% SIC	95% SIC
90% Young Ice	65% Young Ice
10% New Ice	35% New Ice

70% SIC	50% SIC
30% Young Ice	30% Young Ice
70% New Ice	70% New Ice

40% SIC	20% SIC
100% New Ice	80% New Ice
-	20% Young Ice

DMI-ASIP SoD comparison with ice charts

Ice Chart	DMI-ASIP
60% SIC	60% SIC
65% MY Ice	55% MY Ice
35% Thick FY Ice	45% Thick FY Ice

40% SIC	20% SIC
75% MY Ice	35% MY Ice
25% Thick FY Ice	10% Thick FY Ice
-	55% Glacier Ice

20% SIC	15% SIC
100% MY Ice	60% MY Ice
-	20% Thick FY Ice
-	20% Glacier Ice

DMI-ASIP integration of RCM data

