

Thaw-season InSAR surface displacements at Zackenberg, NE Greenland

John Peter Merryman Boncori, Technical University of Denmark, DTU Space

Acknowledgements: Paul Senty, DHI, and Thomas Ingeman-Nielsen, DTU

DTU **E** Sentinel-1 data

- Data used for this study:
 - IW ascending track 74, from May-Oct. 2017 through 2021;
- Both Sentinel-1a and 1b available: 6-day temporal sampling, 5x20 m imagery spatial resolution

InSAR working principle

- The phase of a single SAR image appears random due to "speckle" (interference between the radar returns of elementary scatterers);
- The phase difference between two images (interferogram) is not random, provided the radar returns are statistically similar (coherent).

Multi-temporal InSAR processing

- DTU IPP InSAR software used
- InSAR pairs with temporal separations <= 48 days;
- 40 m x 40 m spatial resolution after averaging.

(towards/away from the radar)

Expected surface deformation

Thawing season vs. InSAR coherence

Thawing season vs. InSAR coherence continued

InSAR deformation measurements

Comparison with model predictions

- Air temperatures for Zackenberg research station available from the Greenland Ecosystem Monitoring programme (<u>https://data.g-</u> <u>e-m.dk/</u>)
- Alpha parameter estimated via a per-pixel least-squares inversion of vertically-projected InSAR time-series

$$\delta_{InSAR}(t) \cong const + \alpha \cdot \left(\sqrt{ADDT(t)}\right)$$

Comparison with model predictions continued

Thawing season alpha estimates (mm/sqrt(°C*day))

Year	Point A	Point B	Research station	ZC-1	ZC-2
2017	1.69	2.08	0.38	0.41	0.55
2018	0.67	-	-	-	0.48
2019	3.84	4.08	1.32	1.39	1.51
2020	1.33	1.23	0.09	0.55	0.55
2021	2.82	2.50	-	-	-

Conclusions

- Thawing season deformations in Zackenberg are observable with Sentinel-1 ... most of the time:
 - InSAR coherence often becomes sufficiently high 2 weeks 1 month into the thawing season;
 - -In 2018, the thawing season was too short to provide reliable observations.
- Consistency of InSAR deformation patterns
 - The areas of highest deformation show a high spatial correlation and are generally consistent in the 2017-2021 timespan.
 - The Zackenberg research station is *not* in one of the highly deforming areas.
- Modelling and interpretation
 - The vertically-projected InSAR timeseries in the valley, are well modelled by the Stefan equation, although model parameters vary significantly from year to year;
 - It is yet to be established, whether these InSAR observations can provide reliable estimates of relevant parameters, e.g. Active Layer Thickness