

Sentinel-3 Validation Team Meeting #7 SLSTR Radiometric Uncertainty Analysis

Dave Smith, Ed Polehampton, Mireya Etxaluze

18-October-2022

Technology Facilities Council

RAL Space © ACRI-ST | OPT-MPC – 2021

L1 Uncertainties - Status

- L1 Products Contain Uncertainty Estimates in Quality Datasets for both TIR and **VIS/SWIR channels**
- Random noise estimates from on-board BB sources reported per scan-line
- 'Correlated' uncertainties due to systematic effects (Calibration) are based on pre-launch estimates •
- MapNoiS3 tool developed by RAL to project uncertainty estimates to L1 product grid
- Works for ALL channels.
- Funded by Eumetsat (Copernicus)
- **TIR Uncertainties have been analysed and documented**
- Remote Sens. 2021, 13(3), 374; <u>https://doi.org/10.3390/rs13030374</u> •
- Funded through METEOC-3 (EMRP) and Eumetsat (Copernicus) •

OPT-MPC

Random effects - detector noise expressed as NEDT (TIR channels) and NEDL (VIS/SWIR channels) for each scan line

Systematic effects – radiometric calibration - tables of uncertainty vs. temperature type-B (a-priori) estimates based on the pre-launch calibration and calibration model

MapnoiS3 tool developed by RAL allows mapping of uncertainty information to L1 images

Science and Technology Facilities Counc S3A - North Sea on 22-April-2020

S9 - 12 µm BT

VIS/SWIR (False Colour)

S9 - 12 µm NEDT (Random)

S1 - 0.56 µm NEDL (Random)

Note: Uncertainties are in radiometric units (K for TIR, Wm⁻²sr⁻¹nm⁻¹ for VIS-SWIR) - relative uncertainties (%) in VIS-SWIR systematic effects are constant with scene radiance since they are dominated by the uncertainty in the VISCAL reflectance factor (see later slides)

RAL Space

Uncertainties in SLSTR L1 Products

S9 - 12 µm uBT (Systematic)

ience and **Technology**

cilities Counci Space

Slides courtesy of Darren Ghent University of Leicester

- TIR uncertainty trends have been implemented in L0 monitoring tools
- **Revised TIR uncertainty estimate tables from LO data for single orbits have** been generated
- Under assessment by Eumetsat
- MapNoiS3 tool has been updated to use an external file with revised L1 uncertainty estimates instead of pre-launch estimates in L1 files

TIR L1 Uncertainties – Status

RAL

Space

OPT-MPC

Black-Body Temperatures

- PRT calibration at subsystem level traced to SPRT (ITS-90) -•
- Blackbody gradients, thermal analysis RAL

Black-Body Cavity Emissivity

- Spectral Reflectance of Black Coating NIST/NPL •
- Cavity Model STEEP323 or SMART3D (ABSL model)

Spectral Response •

FPA measurements - RAL reports [S3-RP-RAL-SL-102 (S3A), S •

Non-Linearity

Instrument level calibration tests – RAL reports •

Detector Noise

Instrument level calibration tests, on-board BB sources. •

SLSTR TIR Uncertainty Budget

S3VT#7 ESRIN| 18-Oct-2022

7

Uncertainties derived from analysis of L0 data from Instrument Temperatures, BB signals, Gain-Offset variations, Noise...

S3VT#7 ESRIN| 18-Oct-2022

9

Status of VIS/SWIR Uncertainty Estimates

L1 Uncertainties in the L1 products are based on the pre-launch calibration test analysis.

VIS/SWIR L1 uncertainties need to be updated to account for post-launch effects

- Vicarious Calibration Adjustment Factor •
- **Destriping correction** •
- Orbital Stability of radiometric gain in particular S1-S3 which are affected by ice contamination + motional • chopping.
- Long-Term Degradation •
- Noise corresponding to VISCAL is affected by non-uniformity of signal hence noise is overestimated. •
 - Update to L1 IPF should address this. •

VIS-SWIR Uncertainty analysis

- **Uncertainty Analysis of SLSTR VIS/SWIR channels in progress following Fiduceo** methodology as used for TIR channels
- Describe measurement equation (the calibration model) •
- Build up effects tree to and trace back to root effects •
- Document effects distribution, correlation scales... •
- Estimate uncertainties in input effects •
- Determine sensitivity coefficients •
- Propagate uncertainties through calibration model •

VIS-SWIR Uncertainty Analysis

We can propagate further to examine effects due to changes between ground-to-orbit of optical

Diffuser BRDF (R_{diff}) Optical Components (uv window transmission τ_{uv} , relay mirror reflectances r_{m1} , r_{m2} , r_{m3}) Geometric Factors (Ω_{cal} , Ω_{slstr})

L1 Radiometric Calibration Model

The measurement equation -

$$L_E = \frac{I_0}{\pi} R_{cal} \left(C_E - C_{off,E} \right) / \left(C_{cal} - C_{off,cal} \right) \cdot K_{drift} \cdot K_{orbital}$$

Affected Term	Description	Characterisat
R _{CAL}	Reflectance Factor For VISCAL	Pre-Launch Calibration – VISCAL and Instrum
		Post-Launch Vicarious Calibration
$K_{orbital_stability}$	Orbital Gain Stability	By design & Pre-Launch Testing
К _{drift}	Degradation of VISCAL Reflectance Factor	Post-Launch Vicarious Calibration
C _E	Earth Scene Counts	Earth Scene counts
C _{off,E}	BB Counts during observation of earth scene	Observation of BB signals - noise
C _{cal}	Signal Counts at full solar illumination	Observation of VISCAL Signal at full solar illu
C _E	BB Counts during observation of VISCAL	Observation of BB signals - noise
NL	Non-Linearity Correction	Pre-Launch Testing
F(λ)	Instrument spectral response	Pre-Launch Testing
I 0 © ACRI-ST ↓ OPT-MPC - 2021	Solar Irradiance	Solspec Reference Spectrum

_stability + 0

tion

nent level

umination

VISCAL Reflectance Factor R_{cal} from component measurements

The mea	surement	equation
---------	----------	----------

$$R_{cal} = \pi \frac{\Omega_{cal}}{\Omega_{slstr}} \tau_{uv} R_{diff} (\theta_0, \theta_v, \phi_0, \phi_v) r_{m1} r_{m2} r_{m3} + 0$$

Affected Term	Description	Characterisation	Ref
Ω_{slstr}	Solid angle of SLSTR	Defined by Telescope aperture and focal length – assumed to be same for all SLSTR Channels	S3-RC-JOP-SL-53595
		For SWIR channels this is affected by intermediate stop	
Ω_{cal}	Solid angle of m3	Optical modelling of PMA to M3 aperture area by JOP	S3-TN-JOP-SL-41119
$ au_{uv}$	Transmission of UV window	Component level measurements on witness sample – assume flight is identical	S3-RC-JOP-SL-53595
$R_{diff}(\theta_0,\theta_v,\phi_0,\phi_v)$	Diffuser BRDF	TNO measurements on flight components	S3-RP-TNO-SL062055 issue 3
r_{m1}	m1 mirror reflectance	Component level measurements on witness sample – assume flight is identical	S3-RC-JOP-SL-53595
r_{m2}	m2 mirror reflectance	Component level measurements on witness sample – assume flight is identical	S3-RC-JOP-SL-53595
r_{m3}	m3 mirror reflectance	Component level measurements on witness sample – assume flight is identical	S3-RC-JOP-SL-53595

Science and Technology Facilities Council

RAL Space

Original VISCAL Reflectance Factors – From Components

OPT-MPC

Nadir								
	S1	S2	S 3	S4	S5	S6		
R _{diff}	0.32496	0.324463	0.322018	0.31880	0.320281	0.308127		
	[0.93%]	[0.93%]	[0.9%]	[2.7%]	[2.6%]	[3.03%]		
r_{m1}	0.9729	0.9794	0.9785	0.9853	0.9876	0.9923		
	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]		
r_{m2}	0.9731	0.9815	0.9820	0.9839	0.9859	0.9897		
	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]		
r_{m3}	0.9718	0.9885	0.9776	0.9787	0.9815	0.9722		
	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]		
$ au_{UV}$	0.9196	0.9217	0.9237	0.9252	0.9254	0.8732		
	[0.14%]	[0.13%]	[0.45%]	[0.45%]	[0.42%]	[0.42%]		
Ω_{cal} / Ω_{SLSTR}	0.2170							
	[5%]							
R _{cal}	0.1874	0.1937	0.1905	0.1908	0.1931	0.1751		
	[5.1%]	[5.1%]	[5.1%]	[5.7%]	[5.7%]	[5.9%]		

SLSTR-A

SLS	TR-B
-----	------

Nadir								
	S1	S2	S3	S4	S5	S6		
R _{diff}	0.3257	0.3252	0.3229	0.3205	0.3218	0.3096		
	[0.93%]	[0.94%]	[0.92%]	[2.66%]	[2.60%]	[3.01%]		
r_{m1}	0.9727	0.9813	0.9816	0.9862	9878	0.9921		
	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]		
r_{m2}	0.9727	0.9806	0.9806	0.9864	9887	0.9924		
	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]		
r_{m3}	0.9733	0.9803	0.9797	0.9816	9832	0.9862		
	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]		
$ au_{UV}$	0.9195	0.9219	0.9238	0.9258	0.9256	0.8734		
	[0.14%]	[0.13%]	[0.46%]	[0.42%]	[0.43%]	[0.5%]		
Ω_{cal} / Ω_{SLSTR}	0.2170							
	[5%]							
R _{cal}	0.1880	0.1928	0.1917	0.1931	0.1949	0.1790		
	[5.1%]	[5.1%]	[5.1%]	[5.7%]	[5.7%]	[5.9%]		

	Oblique					
	S1	S2	S3	S4	S5	S6
R _{diff}	0.32070	0.320032	0.317676	0.315852	0.316671	0.305262
	[0.96%]	[1.02%]	[1.02%]	[2.7%]	[2.61%]	[3.03%]
r_{m1}	0.9703	0.9780	0.9779	0.9834	0.9855	0.9893
	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]
r_{m2}	0.9717	0.9786	0.9784	0.9886	0.9906	0.9937
	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]
r_{m3}	0.9712	0.9796	0.9712	0.9816	0.9835	0.9863
	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]
$ au_{UV}$	0.9190	0.9215	0.9230	0.9255	0.9250	0.8731
	[0.14%]	[0.12%]	[0.28%]	[0.41%]	[0.47%]	[0.5%]
Ω_{cal} / Ω_{SLSTR}			0.18	69		
			[5%	6]		
R _{cal}	0.1585	0.1623	0.1600	0.1638	0.1651	0.1517
	[5,1%]	[5,1%]	[5.1%]	[5,7%]	[5.7%]	[5.9%]

Oblique								
	S1	S2	S3	S4	S5	S6		
R _{diff}	0.3219	0.3211	0.3190	0.3172	0.3178	0.3060		
	[0.98%]	[1.01%]	[1.00%]	[2.70%]	[2.62%]	[3.02%]		
r_{m1}	0.9714	0.9797	0.9806	0.9836	0.9847	0.9880		
	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]		
r_{m2}	0.9732	0.9806	0.9803	0.9848	0.9858	0.9884		
	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]		
r_{m3}	0.9731	0.9808	0.9805	0.9824	0.9843	0.9854		
	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]	[0.1%]		
$ au_{UV}$	0.9195	0.9219	0.9238	0.9258	0.9256	0.8734		
	[0.14%]	[0.13%]	[0.46%]	[0.42%]	[0.43%]	[0.5%]		
Ω_{cal} / Ω_{SLSTR}	0.1869 [5%]							
R _{cal}	0.1599	0.1638	0.1631	0.1641	0.1650	0.1510		
	[5.1%]	[5.1%]	[5.1%]	[5.7%]	[5.7%]	[5.9%]		

© ACRI-ST | OPT-MPC – 2021

Space

RAL

On-Ground Measurement of Reflectance Factor

We measure two responses:

- Earth View Response (Counts vs. Sphere Radiance) g_{Earth_View}
- VISCAL View Response (Counts vs. Sphere Irradiance) g_{VISCAL}

So

 $R_{cal} = \frac{\pi}{\Omega} g_{VISCAL} / g_{Earth_View}$

 Ω = View factor from source to VISCAL diffuser

Non-Linearity Correction has been applied to detector counts before deriving slope

Earth View Response

Slope = $\frac{\pi}{\Omega}g_{VISCAL}$

S3VT#7 ESRIN | 18-Oct-2022 17

Comparison with Vicarious Methods

Reprocessed SLSTR-B pre-launch calibration factors are consistent with the vicarious calibration measurements within uncertainties

S2 is the exception still to be

Investigation of pre-launch tests found that the measurements are very sensitive to small drifts in the

For model-C and D calibration more attention is being given to measurements at low radiance

 $OPT-MPC - 202^{\circ}$

Using time-series of calibration signals we can estimate orbitorbit stability of each channel

S1-S3. Water ice build up does not affect orbital stability

S1 & S2 on SLSTR-B is affected by noise signal giving $\sim 1\%$ orbital variations (ref NC-ESA-

S3 on SLSTR-A exhibited some periods of noisy behaviour.

S4-S6 show very good orbital

- Uncertainty analysis for all channels is an on ongoing process as new information arises.
- TIR uncertainties in L1 products are consistent with on-orbit analysis but revised estimates are available
- **Analysis of VIS/SWIR Uncertainties is in progress**
- **Original uncertainty estimates underestimated effects due to:**
- Geometric effects, Stability of instrument during measurements, Non-linearity •
- **Uncertainty model is being updated to include post launch effects**
- Orbital stability, Long Term Drift, Detector Noise, Vicarious Calibration Analysis •

Conclusions