

PROGRAMME OF THE EUROPEAN UNION

co-funded with

Establishing a validation protocol for open air surface BRF data

Yves Govaerts, Vincent Leroy, Sebastian Schunke Rayference 6th Sentinel-2 Validation Team Meeting, 12 – 14 September 2023, ESRIN, Frascati.

ESA UNCLASSIFIED - For ESA Official Use Only

Background

A bit of theory

Surface reflectance depends only on the illumination Ω_s and viewing Ω_v directions

It is referred to as the Bidirectional Reflectance Factor (Nicodemus, 1977) or the black sky surface reflectance

Does not depend on the illumination (sky radiation) conditions

A bit of theory

Opernicus co-funded with

The Bidirectional Reflectance Factor black sky surface reflectance cannot be directly observed in the field because of the unavoidable contribution of sky radiation

A bit of theory

Opernicus co-funded with

Only the so-called Hemispherical Directional Reflectance Factor at the Bottom-of-Atmosphere (BOA HDRF) can be observed directly in the field; HDRF depends on the state of the atmosphere (illumination conditions). It is referred to as the **blue sky surface reflectance**.

💳 💶 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 📰 👬 🔚 🔤 🐜 🚱 🕨 📲 📰 🖬 🖉

HDRF time series

TIME SERIES (SZA =26, VZA =40, WAVELENGTH = 492nm) TOC BRF (NO ATMSOPHERE) 0.0160 **BOA HDRF** Blue sky reflectance 0.0155 REFLECTANCE 0.0150 Black sky reflectance 0.0145 0.0140 0.0135 0.1 0.3 0.1 0.2 0.1 0.3 0.1 0.6 0.2 0.4 0.1 AOT @ 0.55 All parameters are invariant except the AOT

→ THE EUROPEAN SPACE AGENCY

Elaborate a protocol to validate the retrieval of black sky surface reflectance from blue sky surface reflectance

PROGRAMME OF THE EUROPEAN UNION

co-funded with

IDEAS-QAHE®

opernicus

· eesa

Based on:

- 1. The use of an artificial target of known BRF value
- 2. The acquisition of HCRF (blue sky reflectance) over that target
- 3. The use of a rigorous method to remove atmospheric effects

📕 🚍 💳 🕂 📲 🔚 🔚 🔚 📰 📲 💳 👞 🚳 🛌 📲 🗮 🔤 🖬 ன 🔤 🛶 🚱 🛶 ன ன

Elaborate a protocol to validate the retrieval of black sky surface reflectance from blue sky surface reflectance

atmospheric effect removal

Based on:

- 1. The use of an artificial target of known BRF value
- 2. The acquisition of HCRF (blue sky reflectance) over that target
- 3. The use of a rigorous method to remove atmospheric effects

IDEAS-QAHE®

💳 🔜 📲 🚍 💳 🕂 📲 🧮 🚍 📲 📲 🚍 🐜 🚳 🛌 📲 🗮 🕳 en 🎯

Artificial target design to validate open-air BRF retrieval

Target design requirements

- Design of an artificial target with a controlled BRF shape mimicking the one of homogeneous vegetated surface;
- Simple design to ease its 3D simulation and manufacturing process;
- Use of material with a reflectance close to Lambertian surface;
- Transportable in the field.

PROGRAMME OF THE EUROPEAN UNION

· e esa

OOCTNICUS co-funded with

 5×5 m target with an effective area of 1×1 m to minimise the effects due to its finite size.

📕 🔜 📕 🔚 🔤 🚛 📲 🔚 📲 🔚 👘 🖓 🖕 📲 🛨 🔤 📾 🕸 🚱 🔶 THE EUROPEAN SPACE AGENCY

It includes a **mounting table** that allows to deploy the target in the field with controlled levelness.

It is composed of

PROGRAMME OF THE EUROPEAN UNION

 perforated vertical panels distant of 1m responsible for multiple scattering within the target.

opernicus

co-funded with

• Vertical poles that cast shadow.

These two elements allow to control the shape of the target BRF.

·eesa

■ THE EUROPEAN SPACE AGENCY

eesa

co-funded with

opernicus

PROGRAMME OF THE EUROPEAN UNION

UAV HDRF acquisition

It includes three harms supporting spheres to ease the UAV image navigation for the FOV cropping.

THE EUROPEAN SPACE AGENCY → THE EUROPEAN SPACE AGENCY

How accurately can the artificial target BRF be simulated?

Verification with a target in a SI-traceable goniometer openicus

Metrology for Earth Observation and Climate

Simulated reflectance

· e esa

Manufactured samples

Metrology for Earth Observation and Climate

PROGRAMME OF THE EUROPEAN UNION

→ THE EUROPEAN SPACE AGENCY

eesa

OPERAICUS co-funded with

 $\mathbf{*}$

Si traceable goniometer measurement

Metrology for Earth Observation and Climate

Simulated components

Light source (collimated beam) _____ Sensor (single-pixel radiometer) _____ Artefact model (triangulated mesh) and BRDF (measured data table)

BRDF model

Direct usage of measured data

- Linear interpolation in table
- \Rightarrow No model fitting, but sparse data

National Physical Laborator

PROGRAMME OF THE EUROPEAN UNION

→ THE EUROPEAN SPACE AGENCY

· erestel

co-funded with

opernicus

Si traceable goniometer measurement

Illumination beam at 500nm

RGB picture

Comparison between simulation and observation

→ THE EUROPEAN SPACE AGENCY

·eesa

opernicus

Comparison between simulation and observation

22

·eesa

opernicus

Comparison between simulation and observation

→ THE EUROPEAN SPACE AGENCY

23

·eesa

opernicus

Overall comparison results

opernicus co-funded with

esa

→ THE EUROPEAN SPACE AGENCY

 A protocol is proposed to validate open-air BRF (black sky surface reflectance) retrieval from HCRF (blue sky surface reflectance) observations.

PROGRAMME OF THE EUROPEAN UNION

co-funded with

opernicus

• It is based on the use of a 5 x 5 m artificial target with 3D simulated BRF values (Eradiate).

 Goniometer measurements have demonstrated that this approach is accurate within less than 1 % and precise within 2.5%

💳 ___ ▋▋ ▋▋ ___ ➡ ➡ ▋▌ 🔚 ___ ▋▌ ▋▌ ___ ▋▌ ___ ■ 🔯 🛌 ▋▌ ڲڴ 〓 ➡ 🚺 🗮 == 🖛

All the simulations are performed with the Eradiate 3D RTM freely available at www.eradiate.eu

PRADIATE

