SENTINEL-4 OPERATIONAL PRODUCTS

Diego Loyola, Ronny Lutz, German Aerospace Center (DLR) Teams from Sentinel-4 L2OP and AC-SAF

ATMOS Conference, Bologna, Italy, 1st July 2024

Sentinel-4 Geophysical Level-2 Products

- Copernicus L2 Products
- AC-SAF L2 Products

Sentinel-4 Copernicus Geophysical Level-2 Products

Sentinel-4 Copernicus Products			
Species	Parameter	Algorithm	
O ₃	Total column	DOAS + iter. AMF	
	Tropospheric column	OE	
NO ₂	Total column	DOAS	
	Tropospheric column	S4 & CAMS	
SO ₂	Total column	DOAS (COBRA)	
нсно 🍠	Total column	DOAS	
сносно	Total column	DOAS	
Cloud	Cloud fraction	OCRA	
	Optical depth	ROCINN	
	Cloud height	ROCINN	
Aerosol	Index	UVI	
	Optical depth	GRASP	
	Layer Height	OE	
Surface	BRDF & ws. albedo	GRASP	

Development: ESA with DLR as prime

Operations: EUMETSAT

Sentinel-4 Copernicus – Total Ozone (O₃)

Heritage

 GOME/SCIA/GOME-2: DOAS with iterative AMF/VCD (Van Roozendael et al., JGR 2006; Loyola et al., JGR 2011; Hao et al., AMT 2014)

• TROPOMI:

- OCRA/ROCINN Cloud as Layer (CAL) Loyola et al., AMT 2018
 - No need of ghost-column corrections
- Retrieval of surface properties GE_LER Loyola et al., AMT 2020
- Sentinel-4 algorithm
 - AMF computed using Sentinel-4 BRDF and OCRA/ROCINN CAL

Sentinel-4 Copernicus – Tropospheric Ozone (O₃)

- Heritage: ozone profile algorithm developed for GOME
 - Specific emphasis on tropospheric ozone information in the Huggins bands
- ESA CCI-ozone uses this scheme to provide full record from GOME, SCIAMACHY, GOME-2, OMI and TROPOMI
- Sentinel-4 has no measurements of Hartley band below 305 nm, which provides stratospheric profile information in all previous UVN missions

K.-L. Chan (RAL)

S4 Copernicus – Tropospheric Nitrogen Dioxide (NO₂)

- Heritage: Standard DOAS retrieval from GOME, SCIAMACHY, GOME-2, OMI and TROPOMI
 - Stratospheric correction to determine tropospheric slant columns
 - Application of AMFs to determine tropospheric vertical columns
- Sentinel-4 algorithm
 - Stratospheric fields from <u>CAMS</u> based on assimilation of S5(P) and Sentinel-4 data
 - AMFs based on Sentinel-4 BRF product
 - A priori NO₂ profiles from high-resolution regional CAMS forecast

A. Richter (IUP-B)

Sentinel-4 Copernicus – Sulfur Dioxide (SO₂)

- Heritage: DOAS with one baseline fitting windows plus two alternative windows for high SO₂ (currently operational for S5P)
- Sentinel-4 algorithm
 - Background offset correction with screening of volcanic plumes and heavy pollution
 - Conversion to VCD by means of an AMF dependent on other Sentinel-4 L2 products: BRF, clouds and aerosol index
- Research algorithm COBRA
 - Operational for TROPOMI end 2024

N. Theys (BIRA)

Sentinel-4 Copernicus – Formaldehyde (HCHO)

- Heritage: Two-window DOAS ([BrO] and [HCHO]), operational for S5P
- Sentinel-4 algorithm
 - Background offset correction
 - Conversion to VCD by means of an AMF dependent on other Sentinel-4 L2 products: BRF, clouds and aerosol index
 - Ocean region does not suffice for background correction

Sentinel-4 Copernicus – Clouds

- Heritage: OCRA/ROCINN algorithms used operationally for GOME (Loyola et al., TGRS 2007; Loyola et al., IJRS 2010), SCIAMACHY, GOME-2 (Lutz et al., AMT 2016), and TROPOMI (Loyola et al., AMT 2018; Compernolle et al., AMT 2021)
- Applied to OMI, EPIC/DSCOVR (Molina Garcia et al., JQSRT 2018) and GEMS
- Sentinel-4 algorithm
 - OCRA (UV) for cloud fraction
 - ROCINN (NIR)
 - CAL: cloud optical thickness & top height
 - CRB: cloud albedo & height

GEMS DLR Cloud Fraction

R. Lutz (DLR)

Sentinel-4 Copernicus – Surface and AOD

Heritage: GRASP

- Multi-day retrieval approach, each day with multi-hours measurements
 - Stable and accurate surface reflection retrieval
- Sentinel-4 algorithm
 - Products for cloud free conditions:
 - Surface BRDF (BRF, DHR, White Sky Albedo)
 - AOD
 - Daily Gapless Surface Reflectance
 - Surface BRDF for following wavelengths: 342, 367, 410, 443, 490, 755 nm

P. Litvinov (GRASP), A. Hangler (CLF)

Sentinel-4 Copernicus – Aerosol Layer Height (ALH) and Aerosol Index (AI)

Heritage:

- ALH algorithm from S5P using information from the O2 A-Band
- AI algorithm from TOMS using two different pairs

ALH Diurnal Variability of the Retrieval Error

M. de Graaf (KNMI)

Sentinel-4 Geophysical Level-2 Products

- Copernicus L2 Products
- AC-SAF L2 Products

Sentinel-4 <u>AC-SAF</u> Geophysical Level-2 Products

Sentinel-4 Products			
Species	Parameter	Algorithm	
Operational			
H ₂ O	Total column	DOAS + iter. AMF	
SO ₂	Layer Height	FP_ILM	
Research			
Surface	GE_LER	FP_ILM	
BrO	Tropospheric column	DOAS	
HONO	Nitrous acid during wildfires	DOAS	

Development & Operations: DLR and EUMETSAT AC-SAF

Sentinel-4 AC-SAF – Water Vapor

AC SAF

Heritage:

- DOAS fitting in the blue band
- Iterative AMF/VCD calculation
 - WV profile climatology classified as function of TCWV based on 11 years of ERA-Interim
- Applied to:
 - GOME-2/MetOp
 - Chan et al. 2020, Vaquero et al., 2022
 - TROPOMI/S5p
 - Chan et al. 2021, Garane et al., 2023

Sentinel-4 AC-SAF – SO₂ Layer Height

Cumbre Vieja & Etna 2021

- Heritage: FP_ILM (Full-Physics Inverse Learning Machine)
 - PCA + Neural Network retrieval
 - Extremely fast and accurate SO₂ LH
 - Processing speed: ~3ms / pixel
- Applied to:
 - GOME-2/MetOp
 - Efremenko et al. 2017
 - TROPOMI/S5p
 - Hedelt et al. 2019
 - Inness et al. 2022
 - Koukouli et al. 2022
 - OMI/AURA
 - Fedkin et al. 2021

Boy And Annual Strategy and Annua

Sentinel-4 AC-SAF – Nitrous acid (HONO)

formation of ozone and aerosols.

- Until recently, measurements of HONO mostly using in-situ and spectroscopic techniques from instruments on the ground or onboard aircrafts
- First satellite mapping of HONO in fire plumes using TROPOMI, Theys et al. 2020.
- Potential added-value information on HONO using geostationary satellites (GEMS, TEMPO, Sentinel-4)

15[°] N

N. Theys (BIRA)

Acknowledgements

Sentinel-4 L2OP

- BIRA: Michel Van Roozendael, Jeroen van Gent, Isabelle De Smedt, Nicolas Theys, Huan Yu
 CLF: Michael Aspetsberger, Andrei Filip, Verena Lanzinger, Florian Steinschorn
- **DLR**: Diego Loyola, Athina Argyrouli, Klaus-Peter Heue, Ronny Lutz, Suryakiran Maruvada, Victor Molina Garcia, Katja Reissig, Fabian Romahn, Birgit Wunschheim, Walter Zimmer
- **ESA**: Giorgio Bagnasco, Olivier Le Rille, Ben Veihelmann, Shimon Machluf
- GRASP: Pavel Lytvynov, Anton Lopatin
- IUP-B: Andreas Richter, Lisa Behrens
- **KNMI**: Pepijn Veefkind, Martin De Graaf, Maarten Sneep
- LOA: Oleg Dubovik
- MPIC: Thomas Wagner, Steffen Beirle, Janis Pukite,
 - Simon Warnach
- **S&T**: Daniele Fantin, Frank Vonk
- RAL: Richard Siddans, , Ka Lok Chan, Andy Smith
- RAY: Yves Govaerts, Marta Luffarelli

- **EUMETSAT:** Lothar Schueller, Rasmus Lindstrot, ...
- FMI: Seppo Hassinen
- DLR: Birgit Wunschheim, Pascal Hedelt, Klaus-Peter Heue, Stephan Kiemle, Luca Lelli, Suryakiran Maruvada, Julian Meyer-Arnek, Walter Zimmer