Department of Meteorology

Dynamic, diabatic and orographic processes in extratropical cyclones:

Suzanne Gray

Copyright University of Reading

Potential vorticity A brief introduction

Recall potential temperature: R/c_p p_{ref} **Potential vorticity** $\theta = T$ tropopause $\cdot \nabla \theta$ where ρ is air 100 density and ξ is vector relative $(+\xi_z) \frac{\partial \theta}{\partial \theta}$ vorticity 200 ∂z ρ mb 300 330k Potential vorticity is conserved following fluid parcels for 500 adiabatic frictionless flow. 700 This makes it a good tracer for 1000 upper-tropospheric air over NP North pole 60 30 Equator several days. Climatology of PV (in PVU, solid) and θ (dashed) in N. Hemisphere winter (Hoskins, 1990)

PV

PV in Mediterranean cyclones

Givon et al. (2024)

Cyclone-centred composites of PV (shaded) and sea-level pressure (contours) from selforganising map analysis of >3000 cyclones

> Although clustered by PV, clusters have different 3D structures, life-cycles and hazards

Planetary Rossby waves

- Large amplitude waves are always present in the atmosphere.
- Dispersive waves propagating westwards relative to the mean flow.
- They conserve potential vorticity
- Exhibit stirring, stretching and folding properties including vortex roll up.

Units: 10⁻⁶ K m² kg⁻¹ s⁻¹

ECMWF PV on 315 K isentrope animation

Diabatic PV modification

PV dipole arising from heating applied in a barotropic environment

Dry dynamical processes

Baroclinic instability

Eric Eady (1915-1966)

The development of extratropical cyclones through baroclinic instability has been known about for more than 70 years (Eady, 1949, Charney, 1948).

Jule Charney (1917-1981)

Eady model

Eady model of baroclinic instability (1949) \blacktriangleright maximum growth rate $\sigma = \frac{0.31f}{N} \frac{\partial \bar{u}}{\partial z}$ \blacktriangleright at wavenumber $k = \frac{1.6f}{NH}$

For moist cyclones consider $N \rightarrow N_{effective}$

University of **Reading** Idealised, dry baroclinic lifecycles Dry intrusion В Warm Ð conveyor belt

Isentropic relative flow in a baroclinic wave

Idealised, dry baroclinic lifecycles (LC1,2) Reading

backward-tilted, thinning troughs being advected anticyclonically and equatorward

Rossby wave breaking

Produces major cut-offs in high latitudes

forward-tilted, broadening troughs wrapping

Thorncroft et al., (1993)

Mediterranean cyclones

A potential vorticity streamer or cut-off low system is commonly present close to intense Mediterranean cyclones implying baroclinic forcing

Composite cyclone structure of θ_e and wind at 850 hPa, sea level pressure (white contours) and pressure of the 2-PVU tropopause (black contours)

Dynamical tropopause tends to wrap cyclonically around the cyclone centre, reflecting a PV streamer, which gradually intrudes deeper into the troposphere. From Flaounas *et al.*, 2015

Mediterranean cyclones

Composite cyclone vertical cross sections of θ_e (colour), θ (black contours), θ_{es} (red contours) and the 2-PVU tropopause (thick black contour)

-9h: PV streamer is to the west of the cyclone centre
0h: PV streamer descends to 400 hPa
+9h: PV streamer is over cyclone centre and wider

From Flaounas et al., 2015

Diabatic processes

Importance

Understanding and accurately modelling the effect of cloud-scale processes on grid-scale dynamics remains a challenge.

The link between the cloud scale and larger-scale dynamics has implications for

- Forecasts of heavy precipitation and high wind events,
- Possible downstream propagation of errors,
- Possible biases in climatological structure of cyclones, troughs, and ridges,
- Design of perturbed physics ensembles.

Diabatic effects on cyclones

Direct effect

Tropopause erosion and/or upper-level divergence.

Associated with 'type C' cyclogenesis

Indirect effect Jet enhancement leading to modified Rossby wave propagation

Extratropical vs. Mediterranean cyclones Reading

Total PV composite (100 km radius) 100 intense Mediterranean cyclones

PV anomaly composite (200 km radius) NH DJF intense cyclones

Similar profiles: high PV values in the upper troposphere due to troughs or tropopause folds, or PV streamers; local maximum of PV at lower levels is related to diabatic heating.

Flaounas *et al.* (2021)

Čampa and Wernli (2012)

Tools for diagnosing diabatic processes

Traditional model sensitivity experiments to determine how model processes affect development

> Piecewise PV inversion (of diabatically generated PV anomalies) to determine the strength of associated circulation

Ensemble sensitivity analysis (a form of lagged linear regression

Model Adjoint methods

...to determine how initial condition perturbations affect forecast metrics Passive "diabatic" (PV, moisture, θ) tracers PV tendency diagnostics with Lagrangian trajectories

...to attribute PV anomalies to diabatic processes

Surface pressure tendency equation to determine diabatic contribution to surface pressure change

> Semi-geotriptic (=semi-geostrophic outside boundary layer) balance tool to determine ageostrophic flow response to diabatic heating

Tools: piecewise PV inversion

- Identify PV anomalies using thresholds for pressure, relative humidity etc. Typically consider upper-level, surface thermal anomaly. and diabatically generated.
- Apply PV inversion to each anomaly using a balance assumption such as Charney (1955) nonlinear balance to determine the contributions to the instantaneous cyclone intensity. Pioneered by Davis and Emanuel (1991).
- Other work has gone beyond this to diagnose the contributions from interactions between the different PV anomalies using a factor separation approach (Romero, 2008).

Tools: pressure tendency equation

Diagnose terms in a vertical column that moves with the storm

ITT – vertically integrated virtual temperature tendency split into...... TADV – horizontal temperature advection

VMT – vertical motions

DIAB – diabatic processes inc. radiation, LH due to phase changes, dissipation and diffusion

E-P-evaporation - precipitation

Fink et al. (2013)

Tools: PV tracers

- Diagnosis of diabatically generated PV, its attribution to modelled physical processes and influence on forecast evolution.
- Diabatic tracers are tracers of changes in potential temperature and PV due to diabatic processes. PV tracers enable identification of modifications to the circulation and stability and the diabatic processes responsible for such modifications.

Tools: PV tracers

- Diagnosis of diabatically generated PV, its attribution to modelled physical processes and influence on forecast evolution.
- Diabatic tracers are tracers of changes in potential temperature and PV due to diabatic processes. PV tracers enable identification of modifications to the circulation and stability and the diabatic processes responsible for such modifications.

longitude index

University of Reading

Convection

Chagnon et al. (2013)

z (km)

Tools: trajectories

- Heating rates associated with different diabatic processes diagnosed along trajectories.
- Associated diabatically generated PV calculated using

$$DPVR = \frac{DPV}{Dt} = \frac{1}{\rho} \boldsymbol{\eta} \cdot \nabla(DHR)$$
$$\approx \frac{1}{\rho} \eta_z \frac{\partial}{\partial z} (DHR)$$

where $\boldsymbol{\eta}$ is absolute vorticity = $f + \boldsymbol{\xi}$

 Diabatic heating contributions from different microphysical processes strongly modulated by local vorticity to yield contributions to PV.

Downstream impact

The main effect of diabatic PV is to enhance the anomalies associated with meridional displacements (from a zonal background flow): the diabatic PV and dry PV anomalies are in phase.

Schematic illustration of the diabatic PV dipole relative to the tropopause in an evolving wave

Chagnon et al. (2013)

University of **Dynamic vs. diabatic contributions** 💎 Reading (b) q_{co} (c) $q_{mp}+q_{cu}+q_{mo}+q_{bl}+q_{lw}+q_{sw}$ 200 300 100 intense Mediterranean cyclones 400 Left: conserved PV – from advection of PV streamer into domain. Pa 500 5 Possible role of mountains as PV sources at low levels in several cases (PV essure 600 anomalies generated in wake of mountains due to internal dissipation of ā 700 the airflow) +Ve 800 Right: non-conserved PV. Vertical profile consistent with diabatic processes. 900 -ve 1000 8 10 .2 -4 Flaounas et al (2021) [PVU] [PVU]

Dynamic vs. diabatic contributions

Balanced 850 hPa relative vorticity due to conserved (dynamic) and non-conserved (diabatic) PV.

Average values within 300 km radius of centre.

Medicanes are in red.

Inverse relationship

Orographic processes

Orographic precipitation enhancement

(a) Laminar upslope flow

- (b) Overturning upslope flow
- (c) Diurnal forcing solar heating
- (d) Diurnal forcing nighttime cooling
- (e) Pre-existing cloud layer enhancement over small hill (no lee-side evaporation)
- (f) Seeder-feeder: pre-existing cloud (seeder) + shallow orographic cloud (feeder)
- (g) Lee waves
- (h) Lee wave interaction with cloud fed by low-level moist flow
- (i) Flow blocking
- (j) Partial flow blocking with lee side super-critical flow and hydraulic jump
- (k) Downslope flow on lee of major mountains leading to capping inversion and PI.
- (I) Instability release by mountain foothills.

Houze (2012)

Example: the Alps

Mean annual precipitation (mm per year) for the period 1971–2008.

Isotta et al. (2013)

Lee cyclogenesis

Mediterranean cyclogenesis frequently occurs in the lee of mountains

Number of intense cyclones that achieve max. circulation in grid box over 45-year period

Homar et al. (2006)

Lee cyclogenesis

lee cyclogenesis (AMS glossary)

- (Also called orographic cyclogenesis.) The synoptic-scale <u>development</u> of an atmospheric <u>cyclonic circulation</u> on the <u>downwind</u> side of a mountain range.
- Weak development giving rise to a lee trough can occur due to a redistribution of uniform vorticity as large-scale flow passes over a mountain barrier (conservation of PV implies that an increase in |∂θ/∂p| leads to a decrease of relative vorticity and vice versa).

Note: *f* also changes as flow moves meridionally so modifying vorticity changes

From EUMetrain

South-westerly upper-level flow type

Lee cyclogenesis

 Stronger development occurs when the mountain range interacts with a developing baroclinic wave. In this instance the mountain acts to position the cyclone or generate a secondary cyclone in the lee.

Potential vorticity banners

Reading

- Low-level elongated bands of PV can form downstream of high orography such as the Alps.
- Individual pairs of banners with anomalously +ve and –ve PV are due to flow splitting.
- Primary banners splitting on scale of the whole Alps.
- Secondary banners splitting on scale of individual peaks.
- Width 50-150 km; length up to 1500 km; extend from surface up to ~500 hPa.
- Banners can wrap up and contribute to low-level PV anomaly in a developing lee cyclone.

PV banners due to flow splitting

Diabatically generated PV

Left: 850-hPa geopotential and temperature.

Right: 850-hPa PV and wind vectors From Aebischer and Schär (1998)

Summary

- Potential vorticity is a very useful diagnostic conserved in adiabatic frictionless flow.
- Extratropical cyclones can develop through baroclinic instability in a dry environment but diabatic processes can modify the intensity and structure of cyclones and, in the Mediterranean, be important for cyclogenesis.
- A potential vorticity streamer or cut-off low system is commonly present close to intense Mediterranean cyclones implying baroclinic forcing.
- Baroclinic and diabatic processes are both important for intense Mediterranean cyclones (and the relative importance of these processes are inversely related).
- The complex orography surrounding the Mediterranean can be important for development and genesis of cyclones, as well as affecting the precipitation structure.

Balance: thermal wind balance

