Extinction validation from Umweltforschungsstation Schneefernerhaus (UFS) – a proposal for additional validation measurements

Umwelt Forschungsstation Schneefernerhaus

• EarthCare validation workshop 16/11/2023

Thomas Popp (DLR), Volker Ziegler (Palas), Peter Marton (UFS), Till Rehm (UFS)

Environmental Research Station Schneefernerhaus | Zugspitze Germany's highest research station at 2650 m

High altitude research station

for climate, bio-, hydro- and geospheric research as well as for environment and altitude medicine

Observatory

for air pollutants, greenhouse gases, weather and natural phenomena

Center for communication and meetings

for teaching, education and stustainabilitly strategies

Umwelt Forschungsstation Schneefernerhaus

www.schneefernerhaus.de

UFS target area: satellite validation

- Satellite passive observations: large coverage
- In-situ measurements: tied to SI standards (GAW)
- Issues to link both
 - Ambient air, vertical profiles
 - Attempt of routine correction of humidity effects failed (ESA Aerosol_cci) despite of several well equipped stations (ACTRIS Super-Sites / GAW network)
- EarthCare will help close vertical profiles
- UAV ambient 3D measurements can contribute to close both gaps
 - Humidity + meteorology
 - Size distribution

3

- Extinction: Scattering + Absorption
- Low cost PM sensors

Umwelt Forschungsstation Schneefernerhaus

International Satellite Aerosol Science network AEROSAT

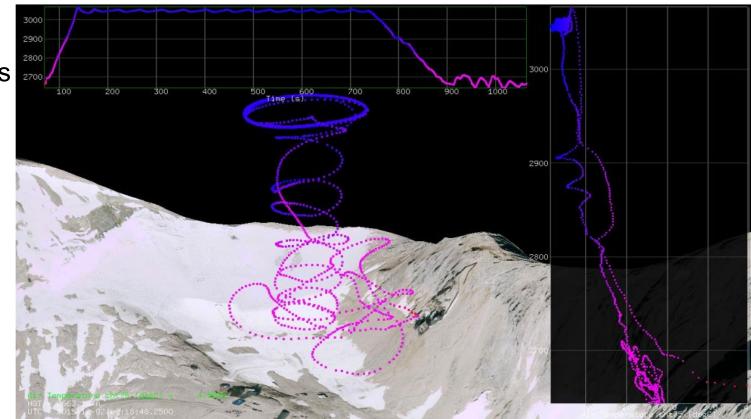
- International forum for satellite aerosol experts and users
- Requirement: systematic 3D-in-situ characterisation of aerosol types
 - -> "new OPAC"
 - needs routine measurement flights over longer period
 - To reach statistically significant characterization of air masses
 - Optical properties, mass extinction efficiency
 - alternative flight concepts
 - Medium size aircraft with a set of instruments (Kahn et al.)
 - UAV-swarm flights with selected instruments

Kahn, R.A., T. Berkoff, C. Brock, G. Chen, R. Ferrare, S. Ghan, T. Hansico, D. Hegg, J.V. Martins, C.S. McNaughton, D.M. Murphy, J.A. Ogren, J.E. Penner, P. Pilewskie, J. Seinfeld, and D. Worsnop, 2017. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses. Bull. Am. Meteoro. Soc. 2215-2228, doi:10.1175/BAMS-D-16-0003.1

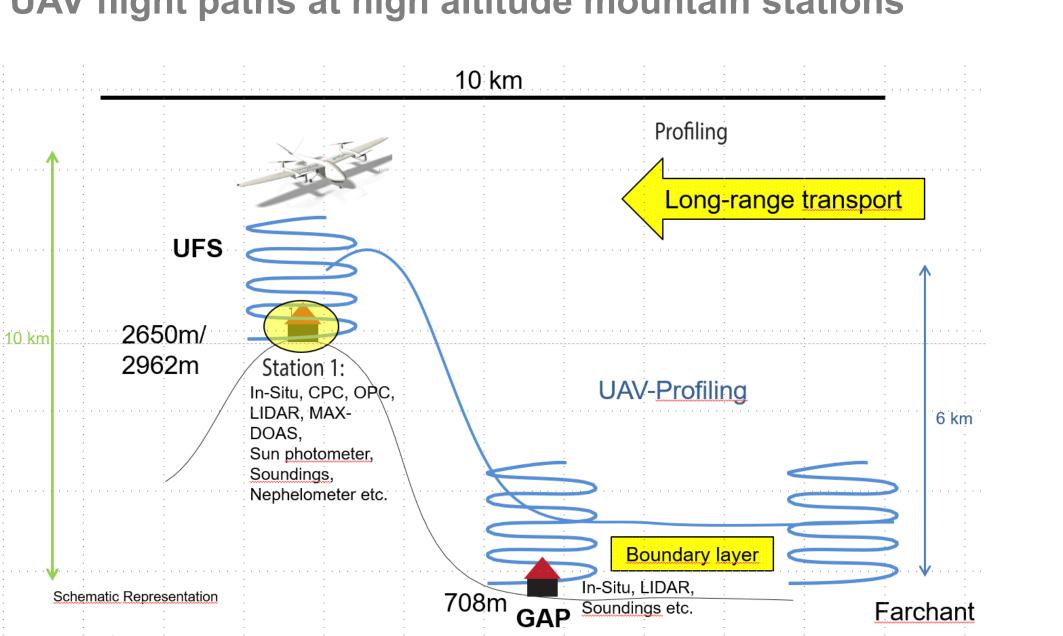
AeroSA

AeroCom

UFS feasibility study 2016


Requirement analysis for passive instruments

Requirement	Comment				
Spatial resolution: 1km horizontal	Single pixel in satellite datasets	<u>Abschlussbericht</u>			
Spatial coverage: 10 km including valley areas	Retrieval very difficult in summit area				
Temporal coverage: 1 hour	Aerosols can be regarded stable				
Vertical resolution: 100m at lower end	Individual aerosol layers	ZKL01Abt7_69452Machbarkeitsstudie "Aerosol Supersite" Entwicklung reproduzierbarer Konzepte für innovative Satellitenvalidierung auf Basis neu-entwickelte standardisierter UAV-In-Situ-Messungen und erweiterter LIDAR-Detektion an der UFS			
Vertical coverage: 0 – 10 km (from valley ground)	Total tropospheric column				
Temporal matching: ±30 min (10:00 /13:30)	AERONET experience				
accuracy: < 50% of satellite AOD accuracy	integrated column / pixel values				
Size distribution 2 – 3 modes		Projektlaufzeit: 27.10.2015 bis 30.4.2016			
Humidity condition: ambient, no drying	Switch off above 90% rH (protection)	Gefördert durch das Bayerische Staatsministerium für Umwelt und Verbraucherschutz			
Long-term: humig + dried (to assess humid growth)					
frequency: 1x per week, all seasons	Reasonable overlap with satellite data				
Duration of regular observations: minimum 1 year	significant statistics				
Aggregated (clustered) optical properties statistics: several years	Separate different aerosol types	Geförderte Projektpartner: Betriebsgesellschaft Umweltforschungsstation Schneefernerhaus GmbH, Aerosol Akademie, DLR-DFD, KIT/IMK-IFU			
Low / no cloud coverage	Contaminate satellite aerosol products	Technologiepartner: GAT, DIALOGIS, QUANTUM Systems Assoziierte Partner: DWD, UBA, LMU, Universität Augsburg, Helmholtz-Zentrum München, TU München,			
Internal consistency of all measurements	3D integration / optical closure	TROPOS, Leibniz Rechenzentrum (LRZ)			
External consistency with station GAW in-situ measurements	Optical vs. dynamical methods				
Instrument stability: caution at large temperature / humidity /	at layer boundaries possibly adaptive flight control	Projektleitung:			
pressure gradients		BG UFS GmbH – Markus Neumann			
Automatization: data analysis	Cost reduction/ easy transferability				
UAV emissions: zero	Avoid miss-interpretation	Redaktionelle Zusammenstellung Abschlussbericht:			
Data analysis:	Comparability of measurement points	Aerosol Akademie (Wissenschaftliche Koordination) – Dr. Marcus Hank			
Step 1: Integration (x-y / t and z) effective column values					
Step 2: Integration to partial AOD values (e.g. fine mode, dust)					
Step 3: Tools for external users / on-demand analysis					
Synchronisation of separate instruments < 1 sec		3. Mai 2016			
		5. IVIdI 2010			

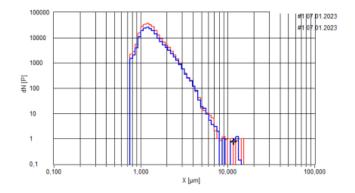

UAV flight paths at high altitude mountain stations

- Combined measurements at high + low altitudes
- Can cover significant part of the troposphere
 - Boundary layer
 - Long-range transport
 - Total column for passive instruments
 - Vertical profile for EarthCare
- Feasibility study
 - UAV test flights were made
 - With different types of UAV

UAV flight paths at high altitude mountain stations

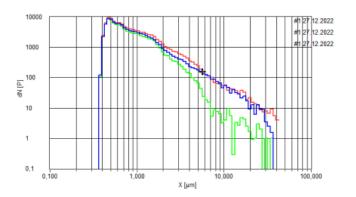
UFS strategy

- Aim: operate regular UAV flights to measure ambient aerosol in-situ properties
- Palas wet aerosol spectrometer (adapted)
 - Tested at Sonnblick (ACTRIS campaign), Marambio and test mounted on UAV
 - Ambient size distribution / aerosol scattering
- Commercial aethalometer
 - Aerosol absorption
- Procedure for UAV flights beyond the visual line of sight in progress BVLOS
- Implementation planned from 2024



Palas aerosol spectrometer as basis

Adaptation for wet aerosol measurements


Measuring principle	Optical light scattering on single particle
Measurement range (number concentration)	0 – 200 P/cm³
Measurement range (size)	0.6 – 40 μm 0.8 – 100 μm
Volume flow	5 l/min (full flow analysis)
Interfaces	USB, Ethernet (LAN), RS232/485, Wi-Fi
Power supply	110 – 230 V
Temperture range	-30 to +40 °C
Dimensions (W x H x D)	Approx. 600 x 1000 x 270 mm
Weight	Approx. 35 kg
Accessories	Heatable Inlet Weather Station

Aerosol background distribution

EARS

Antarctic campaign (Marambio, 12/2022-3/2023)

BVLOS procedure status

- Permission for BVLOS flights has been granted in November 2023 for a separate project by the German air traffic authority (Luftfahrtbundesamt, LBA)
- The approved airspace is designed for a permafrost monitoring project in the slopes of Mt. Zugspitze (approx. 2 km², height 200m agl)
- BVLOS flights for aerosol measurements / satellite ground truthing will need a different air space and thus a separate permission
- The current BVLOS project can serve as a blueprint for future applications
- The UFS and it's partners will have gained considerable experience in the application procedures due to the current project

Applications / relevance

- Satellite validation:
 - Passive radiometers: AOD + aerosol properties
 - EarthCare: extinction profiles
- Support to retrieval development
 - Statistics / climatology of optical aerosol properties

Users

- Roll-out to GAW stations (mountain locations)
- Develop analysis and integration tools for users
- Validation of EarthCare products
- Validation + development of Copernicus products
- Algorithm improvement for ESA CCI + Climate-Space / C3S CDRs
- Support to retrieval experts / AEROSAT algorithm development

Umwelt Forschungsstation Schneefernerhaus

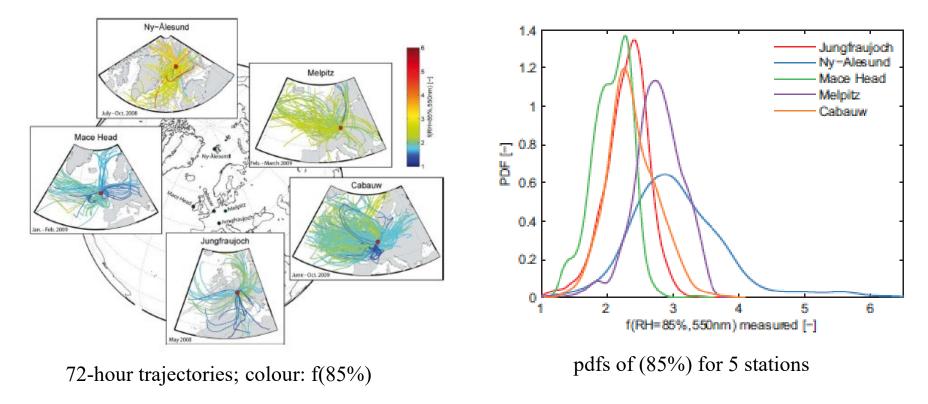
Summary: EarthCare validation

- Benefits from high altitude starting point
- Will be included within regular flights at UFS
- Will use CAMS forecasts for flight planning
- Validate extinction profiles in free troposphere

- EarthCare validation proposal needs to be worked out
 - Funding opportunity from Freistaat Bayern: infrastructure (UAV, instrument)
 - Funding for data analysis needs to be raised
 - Extended BVLOS authorization for vertical profiles needs to be obtained
 - Altitude range limited by authorities
 - Using insights of this workshop / requirements

Assumed aerosol optical properties for AOD retrieval

Table 1. Parameters describing the microphysical and optical properties of the aerosol components used in the Aerosol-cci round-robin excersizes.


Aerosol Component	Real part Refr Index (550 nm)	Im Part Refr Index (550 nm)	Reff* (µm)	Geom. st dev (σ_i)	Variance $(\ln \sigma_i)$	Geom. mean radius $(\bar{r}_{gi},$ μ m)	Comments	Aerosol layer height
Dust [§]	1.56 (varies with wavelength) [§]	0.0018 (varies with wavelength) [§]	1.94	1.822	0.6	0.788	1 *	Fixed hgt at 2-4km
Sea salt	1.4	0	1.94	1.822	0.6	0.788	AOD threshold	0-1 km
Fine mode very weak- abs	1.4	0.003	0.142	1.7			ana.	-
Fine mode strong-abs	1.5	0.040	0.142	1.7	0.00	0.10		.20 (
ubovik et al.,	2002		\bigcup		0.0000	0.0960	ode_effective_ 0.1920 frequency	_radius 0.2880

De Leeuw, Holzer-Popp, et al., RSE 2014

Case study in-situ validation of satellite aerosol products

- Several well equipped stations (ACTRIS Super-Sites / GAW network)
- Attempt of routine correction of humidity effects (ESA Aerosol_cci)

• Conclusion: 40% uncertainty- too large as reference