



# Influence of wave driven air-sea interactions on a strong Mediterranean cyclone

Yann Le Péru--Morvan<sup>2</sup>, Matis Ragu--Fonta<sup>2</sup>, **Sophia E. Brumer**<sup>1</sup>, Florian Pantillon<sup>1</sup>, Joris Pianezze<sup>1</sup>, Loly Grand<sup>2</sup>, Antonio Ricchi<sup>3</sup>, Marie-Noelle Bouin<sup>4</sup>

<sup>1</sup>CNRS LAERO, Toulouse, France, <sup>2</sup>Université Toulouse III - Paul Sabatier, Toulouse, France, <sup>3</sup>University of L'Aquila, CETEMPS, CNR-ISMAR, Italy, <sup>4</sup>Meteo France CNRM, France











# Air-sea interactions at high winds



1 hour mean winds of ~ 26 m/s

3<sup>RD</sup> MEDCYCLONES WORKSHOP

# Air-sea interactions at high winds – impacts on the MABL

#### Waves = roughness $\rightarrow$ reduction in surface winds



- Complex sea state (wind-sea & swell)
- Misalignment between winds and waves



# Wave driven air-sea interactions – impacts on the MABL



# Wave driven air-sea interactions – impacts on the MABL





Wave dependent air-sea flux parametrizations with consideration for wave age (WASP, Bouin et al 2023) & sea spray (e.g. Bao et al. 2011)

# Sea spray impacts

Sea spray generation & transport remain elusive

Orders of magnitude spread in generation function



Veron F. 2015. Annu. Rev. Fluid Mech. 47:507–38



#### 3<sup>RD</sup> MEDCYCLONES WORKSHOP

# Sea spray impacts on an idealized TC

Sea spray

- $\rightarrow$ increases enthalpy fluxes & reduces drag
- $\rightarrow$ increases intensity

 $\rightarrow$ can contribute to asymmetry





# Wave driven air-sea interactions - impacts in the ocean



**Stokes drift** 

→ wave induced particle motion

Notations:

$$\hat{u}$$
 - quasi-Eulerien velocity

- $u_s$  Stokes drift
- $u_L$  Lagrangian velocity  $(\hat{u} + u_s)$

3<sup>RD</sup> MEDCYCLONES WORKSHOP



sophia.brumer@cnrs.fr

#### **Stokes vortex force**

 $\rightarrow$  advection & tilting



# Wave driven air-sea interactions - impacts in the ocean



3<sup>RD</sup> MEDCYCLONES WORKSHOP

#### Wave driven air-sea interactions – impacts in the ocean



### The French coupled model framework



3<sup>RD</sup> MEDCYCLONES WORKSHOP

# The French coupled model framework



# The French coupled model framework



## Case study: medicane lanos of September 2020



AQUA/MODIS 17 Sep 2020 1145 UTC



3<sup>RD</sup> MEDCYCLONES WORKSHOP

# Simulations – Track and Intensity

4 simulations @ 1.8 km resolution:

- 1. Atmosphere only
- 2. AO atmosphere-ocean
- 3. AOW -atmosphere-ocean-waves
- 4. AOWSS AOW with sea spray

- $\rightarrow$ High resolution leads to deep low
- →Coupling decreases intensity closer to in situ observation
- →Track minimally impacted by coupling and well represented in all simulations



3<sup>RD</sup> MEDCYCLONES WORKSHOP

## Results – 10 m winds



3<sup>RD</sup> MEDCYCLONES WORKSHOP

sophia.brumer@cnrs

09-16 00

09-16 12

09-17 00

09-17 12

Time

09-18 00

09-18 12

09-19 00

#### Results – 10 m winds



# Results – Impact on the 3D wind structure



3<sup>RD</sup> MEDCYCLONES WORKSHOP

## Results – Cold wakes



Strong cooling ( $\Delta$ SST > 4°C) along the path in 2 separate patches

3<sup>RD</sup> MEDCYCLONES WORKSHOP

# Results – Surface salinity and rain



Freshening in the second cold wake, mixed signal in the first cold wake

3<sup>RD</sup> MEDCYCLONES WORKSHOP

# Results – Surface salinity and rain



Freshening in the second cold wake, mixed signal in the first cold wake

3<sup>RD</sup> MEDCYCLONES WORKSHOP

# Results – Ocean mixed layer

Temperature anomalies reach 20 to 60 m depth

Similar for salinity anomalies (not shown)

Detailed process study ongoing →budget analysis









# **Conclusions & Perspectives**



High resolution coupled atmosphere-wave-ocean simulations of medicane lanos

- 1. Allowed good representation of the storm track & more realistic intensity
- 2. Showed intensive cold wakes ( $\Delta$ SST > 4°C) with negative feedback on intensity
- 3. Showed how waves & sea spray accentuate MABL asymmetry

NEXT STEPS:

- 1. Test stronger sea spray generation functions & look at impact on microphysics
- 2. Process study contrasting the two cold wakes
- 3. Comparison to COAWST modelling framework (collab. A. Ricchi, STSM)
- 4. Coupled AOW large-eddy simulations using the French modelling framework



3<sup>RD</sup> MEDCYCLONES WORKSHOP

#### Results – heat fluxes



3<sup>RD</sup> MEDCYCLONES WORKSHOP

# Results – Impact on the 3D wind structure



29



Figure 7: map of the temperature, the salinity and the MLD before, during and after Ianos