

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

Development of a new simulator on COSP2 for vertical doppler velocity of EarthCARE CPR

Yuhi Nakamura^{*1}, Kentaroh Suzuki¹, Hiroaki Horie² 1: Atmosphere and Ocean Research Institute, the University of Tokyo 2: National Institute of Information and Communications Technology, Japan

See also Poster #11

Newer observation by EarthCARE CPR and satellite simulator on COSP2

https://www.eorc.jaxa.jp/EARTHCARE/about/hardware i.html

- **Higher sensitivity than CloudSat**
- **Doppler velocity observation**
 - \rightarrow Dynamics of cloud microphysics

- **Retrieval formulation**
- What is needed for the new simulator... ullet \rightarrow droplet fall velocity
 - \rightarrow vertical air motion
- For size distribution and back scatter, ۲ use codes already implemented in COSP2.

Contributions to climate models expected from new doppler velocity observation

- Droplet fall velocity was often considered as a tuning parameter. It affected the performance of models, both GCMs and CRMs.
 → Risk of a physically meaningless setting.
- \checkmark New observation is expected to constraint the fall velocity of microphysics.
- Observations of cumulus mass flux itself were very limited.
- ✓ Quantitative estimation will be provided by EarthCARE doppler velocity.
 → But CPR attenuation would be a difficult issue...

To maximize these benefits from EarthCARE, it is necessary to ensure a basis for comparing models with observation.

- 1. To develop a new simulator for doppler velocity on COSP2.
- 2. To compare ground-based doppler radar and GCM.
- 3. Further discussion of an impact for climate from droplet fall velocity and use of doppler velocity statistics.

Ground-based radar

1. NICT

(National Institute of Information and Communications Technology) provided by Horie-san (NICT). In Koganei City, Tokyo. (30km west of Senso-ji temple, Asakusa)

2. MOSAiC

(Multidisciplinary drifting Observatory for the Study of Arctic Climate details: <u>https://mosaic-expedition.org</u> provided by ARM, ship-borne drifting on sea ice in Arctic Sea

Both datasets are in Aug. 2020.

GCM setup

MIROC6 (Tatebe et al. 2019; *GMD*)

- <u>Prognostic precipitation scheme</u> (Michibata et al. 2019; *JAMES*) This bulk scheme prognoses mass and number of falling hydrometeors: cloud, rain, and snow.
- about 100 km resolution (t85 I40h)
- <u>JJA 2020</u>
 - ✓ 5×5 grids centered on Tokyo (NICT)
 - ✓ 30W-20E, 75N-88N (MOSAiC)

COSP2

- CFMIP Observation Simulator Package
- Doppler velocity simulator is developed.
- #subcolumn = 140

Simulator design: prognostic precipitation scheme

Construction of droplet fall velocity v_f $v_f = viscous drag \times formulation$

viscous drag

The higher the air density, the greater the viscous drag and the slower the fall speed.

 $\sqrt{\rho_0/\rho}$: Square root of the ratio of air density ρ to the standard value (ρ_0 ; 1013 hPa, 0°C) on/off switchable

formulation

2 types of functions of droplet diameter D for v_f formulation

- 1. Power law: aD^b
- **2.** PL08: $b_1 b_2 \exp(-b_3 D) + (b_2 b_1)\exp(-5b_3 D)$ Posselt and Lohmann (2008; *ACP*)

ctrl	large-scale condensation					cumulus convection			
droplet	cloud liq.	cloud ice	rain	snow	graupel	cloud liq.	cloud ice	rain	snow
viscous drag	×	×	×	×	×	×	×	0	0
PL08	0	×	0	×	×	0	×	×	×
Power law; a	-	1.107	-	3.321	19.3	-	1.107	842	4.84
Power law; b	-	0.22	-	0.22	0.37	-	0.22	0.8	0.25

PL08: $b_1 = 9.65$, $b_2 = 10.43$, $b_3 = 600$

Comparison between NICT obs. and MIROC6

- Slower v_d in MIROC6, especially rain particle
- Discrete distribution, ice-snow

Overestimating Z_e
 ✓ Often seen bias

Comparison between MOSAiC obs. and MIROC6

- Slower v_d , smaller variance in MIROC6.
- Lack of faster falling droplets below 2km

- Overestimating Z_e
- Distribution is quite different.

Tuning to match v_d in MIROC6 with NICT obs.

• Tuned to faster v_d and larger variance

- Z_e becomes decreased
- better 2dPDF, but separated

9/11

Impact on climate of v_d tuning

-15

0

-30

15

30

Z_e - v_d relation on 2dPDF of NICT observation

 $\checkmark Z_e$ - v_d relation can be made in the similar way as Z-R relation.

• with **Rayleigh scattering limit** and **power law** for droplet fall velocity

• This line fitting contributes to estimate the scale *b* of droplet fall velocity.

• Different scale is suggested: $b \approx 0.5$ for snow, $b \approx 1.0$ or 1.5 for rain.

Summary

1. New simulator for doppler velocity is developed on COSP2.

• Droplet fall velocity and vertical air motion are newly handled.

2. Distribution of v_d in MIROC6 is not good, actually.

- slower v_d and smaller its variance, overestimated Z_e
- separated by categories of cloud/precipitation droplet

3. Significant impact on climate by tuning of droplet fall velocity

- Large modification of cloud fraction and strong cooling effect.
- Cloud microphysics schemes still have much room for improvement.

4. Estimation of scale of fall velocity by Z_e - v_d relation

- Different scale among cloud, rain, snow droplets?
- Implication for shape of ice particles?
- ✓ We are now preparing to publish this new simulator for COSP2.
- ✓ I'd like to see this simulator used with EarthCARE observation to understand model variability and to improve schemes related to clouds.

12/11

Supplement

Details of tuning setup

PL08: $b_1 - b_2 \exp(-b_3 D) + (b_2 - b_1) \exp(-5b_3 D)$ or **Power law:** aD^b

ctrl	large-scale condensation				cumulus convection			
droplet	cloud liq.	cloud ice	rain	snow	cloud liq.	cloud ice	rain	snow
viscous drag	×	×	×	×	×	×	0	0
PL08	0	×	0	×	0	×	×	×
Power law; a	-	1.107	-	3.321	-	1.107	842	4.84
Power law; b	-	0.22	-	0.22	-	0.22	0.8	0.25
$b_1 = 9.65, b_2 = 10.43, b_3 = 600$								

tuning	large-scale condensation				cumulus convection			
droplet	cloud liq.	cloud ice	rain	snow	cloud liq.	cloud ice	rain	snow
viscous drag	0	0	0	0	0	0	0	0
PL08	0	×	0	×	0	×	×	×
Power law; a	-	300	-	100	-	300	842	4.84
Power law; b	-	0.8	-	0.5	-	0.8	0.8	0.25
$b_1 = 10.0, b_2 = 10.43, b_3 = 1500$								

90N

60N

30N

- EQ

30S

60S

90S

0.020.04

<

cloud fraction @ 850hPa

Simulator design: diagnostic precipitation scheme

Simulator design: cumulus scheme

v_d simulator on cumulus precipitation in MIROC6

$$v_d = v_f + \frac{\int_{r_{\min}}^{r_{\max}} dn(r)/dr \cdot C_{bk}(r)v_f(r) dr}{\int_{r_{\min}}^{r_{\max}} dn(r)/dr \cdot C_{bk}(r) dr},$$
$$v_f = aD^b$$
$$v_d = \frac{aM_{6+b}}{M_6}$$

 $dBZ_e = 10 \log_{10} Z_e$ $Ze = 10^{\frac{dBZ_e}{10}}$

mod. gamma

$$n(D) = \frac{N}{\Gamma(\mu)D} \left(\frac{D}{D_0}\right)^{\mu} \exp\left(-\frac{D}{D_0}\right)$$
$$NM_k = \int D^k n(D) \, dD$$
$$M_k = D_0^k \frac{\Gamma(\mu+k)}{\Gamma(\mu)}$$

$$v_d = \frac{aM_{6+b}}{M_6}$$
$$= aD_0^b \frac{\Gamma(\mu+6+b)}{\Gamma(\mu+6)}$$
$$D_0^b = \frac{v_d}{a} \frac{\Gamma(\mu+6)}{\Gamma(\mu+6+b)}$$

$$\begin{aligned} v_d &= aM_{6+b} \ 10^{18} \frac{1}{Z_e} \frac{6}{\pi} \frac{m}{M_3} \\ &= \frac{6 \times 10^{18}}{\pi} \ am \frac{M_{6+b}}{M_3} \frac{1}{Z_e} \\ &= \frac{6 \times 10^{18}}{\pi} \ aD_0^{3+b} m \frac{\Gamma(\mu+6+b)}{\Gamma(\mu+3)} \frac{1}{Z_e} \end{aligned}$$

$$\begin{split} Z_e &= 10^{18} \frac{6}{\pi} \frac{M_6}{M_3} \frac{m}{\rho} \\ &= 10^{18} \frac{6}{\pi} \frac{m}{\rho} D_0^3 \frac{\Gamma(\mu+6)}{\Gamma(\mu+3)} \\ D_0^3 &= 10^{-18} \frac{\pi}{6} \frac{\rho}{m} \frac{\Gamma(\mu+3)}{\Gamma(\mu+6)} \, Z_e \end{split}$$

$$v_d = a \frac{\Gamma(\mu+6+b)}{\Gamma(\mu+6)} \left(10^{-18} \frac{\pi}{6} \frac{\rho}{m} \frac{\Gamma(\mu+3)}{\Gamma(\mu+6)} Z_e \right)^{\frac{b}{3}}$$

log normal

$$n(D) = \frac{1}{D} \frac{N}{\sqrt{2\pi} \log \sigma} \exp\left[-\frac{(\log D - \log \mu)^2}{2(\log \sigma)^2}\right]$$
$$NM_k = \int D^k n(D) \, dD$$
$$M_k = \exp\left(k \log \mu + \frac{k^2(\log \sigma)^2}{2}\right)$$
$$2R_{eff} = \frac{M_3}{M_2} = \mu \exp\left[\frac{5}{2}(\log \sigma)^2\right]$$
$$(\log \sigma)^2 = \frac{2}{5} \log\left(\frac{2R_{eff}}{\mu}\right)$$
$$M_k = \exp\left(k \log \mu + \frac{k^2}{5} \log\left(\frac{2R_{eff}}{\mu}\right)\right)$$
$$= \mu^k \cdot \left(\frac{2R_{eff}}{\mu}\right)^{\frac{k^2}{5}} = \mu^{k - \frac{k^2}{5}} D_{eff}^{\frac{k^2}{5}}$$

$$v_{d} = \frac{aM_{6+b}}{M_{6}} = a \,\mu^{b - \frac{(6+b)^{2} - 6^{2}}{5}} \left(D_{eff}\right)^{\frac{(6+b)^{2} - 6^{2}}{5}}$$
$$= a\mu^{-\frac{b(b+7)}{5}} D_{eff}^{\frac{b(b+12)}{5}}$$
$$Z_{e} = 10^{18} \frac{6}{\pi} \frac{M_{6}}{M_{3}} \frac{m}{\rho} = 10^{18} \frac{6}{\pi} \frac{m}{\rho} \,\mu^{-\frac{12}{5}} \left(D_{eff}\right)^{\frac{27}{5}}$$

$$\begin{split} \nu_d &= a\mu^{-\frac{b(b+7)}{5}} \left(10^{-18}\frac{\pi}{6}\frac{\rho}{m}\mu^{\frac{12}{5}}Z_e\right)^{\frac{b(b+12)}{27}} \\ &= a\mu^{-\frac{b(b+3)}{9}} \left(10^{-18}\frac{\pi}{6}\frac{\rho}{m}\right)^{\frac{b(b+12)}{27}} Z_e^{\frac{b(b+12)}{27}} \end{split}$$

$$v_{d} = a D_{eff}^{\frac{b(b+12)}{5}} \left(10^{-18} \frac{\pi}{6} \frac{\rho}{m} D_{eff}^{-\frac{27}{5}} Z_{e} \right)^{\frac{b(b+7)}{12}}$$
$$= a D_{eff}^{-\frac{b(b+3)}{4}} \left(10^{-18} \frac{\pi}{6} \frac{\rho}{m} \right)^{\frac{b(b+7)}{12}} Z_{e}^{\frac{b(b+7)}{12}}$$

Simulator design: *****

