Copernicus POD Service Copernicus S-3 POD Performance of operational products

Presenter: Jaime Fernández (GMV)

C. Fernández (GMV) P. Féménias (ESA/ESRIN), C. Nogueira (EUMETSAT)

7th Sentinel-3 Validation Team Meeting, ESRIN, Italy 18-20 October 2022

© 2022 GMV Property – All rights reserved

Agenda

- **1. Introduction to Copernicus POD Service**
- **2.** Performance of operational products
- 3. Next steps

INTRODUCTION

INTRODUCTION TO CPOD SERVICE PHYSICAL ARCHITECTURE

Sentinel-3 POD Service – Performance of products

Page 6

INTRODUCTION TO CPOD SERVICE

SENTINEL-3 POD MODELLING

-	-				
Model	Value		NRT	STC	NTC
EOPs	IERS rapid / finals	Arc length	24 h	5+24+3 h (32h)	
Reference System	IERS standards	Drag coefficient	10 (estimated)	1 (estimated)	
Gravity field	Current: EIGEN.GRGS.RL04 TVG Future: COSTG	Solar pressure coeff.	1 (estimated)	1 (fixed)	
Solid tides	IERS 2010	1/rev empiricals	2 sets per arc in: along sin+cos cross sin+cos	16 sets per arc in: along cnt+sin+cos cross cnt+sin+cos	
Ocean tides	FES 2014	(estimated)			
Atmospheric gravity	GFZ AOD L1B RL06	GNSS sampling	30 sec	10 sec	
Earth / Ocean pole tides	IERS 2010	GNSS products	magicGNSS	magicGNSS	CODE Finals
Radiation pressure model	Box-wing	Receiver ambiguities	Float <i>Future: Fixed</i>	Float <i>Future: Fixed</i>	Fixed
Earth radiation	Albedo and infra-red applied	Manoeuvres	Calibrated		
Atmospheric density model	msise00				

RESTITUTED ORBIT EPEHEMRIS (NRT) – POD

3D differences CPOD ROE vs. COMB S3A
S3B E 01/01/2021 02/04/2021 02/07/2021 01/10/2021 31/12/2021 01/04/2022 01/07/2022

Sentinel-3 POD Service – Performance of products

Radial differences CPOD ROE vs. COMB at different sigma

Page 10

© 2022 GMV Property - All rights reserved

RESTITUTED ORBIT EPEHEMRIS (NRT) – MAR

3D differences MAR ROE vs. COMB • S3A • S3B

Radial differences MAR ROE vs. COMB at different sigma

S3A S3B

Sentinel-3 POD Service – Performance of products

CPOD MEDIUM ORBIT EPEHEMRIS (MOE)

Radial differences CPOD MOE vs. COMB at different sigma S3A S3B 2.5 2.2 1.5 1.24 сB 1.06 0.97 1 0.78 0.75 0.5 0 1-sigma (68%) 2-sigma (95%) 3-sigma (99.7%)

3-sigma impacted by outliers!

Sentinel-3 POD Service – Performance of products

CNES MEDIUM ORBIT EPEHEMRIS (MDO)

3D differences CNES MDO vs. COMB • S3A • S3B

Radial differences CNES MDO vs. COMB at different sigma S3A 53B 2.5 2 1.5 1.5 1.5 0.97 0.95 1.22 1.11 0.81 0.78 0.97 0.95 1.22 1.11 0.95 0.97 0.95

CPOD PRECISE ORBIT EPHEMERIS (POE)

Radial differences CPOD POE vs. COMB • S3A • S3B 5 4.5 4.5 5 2.5 2 1.5 1.5 0 0 1/01/2021 02/04/2021 02/07/2021 01/10/2021 31/12/2021 01/04/2022 01/07/2022

3D differences CPOD POE vs. COMB • S3A • S3B 5 4.5 4 3.5 3 • E 2.5 2 1.5 • . ۰ 0 01/01/2021 02/04/2021 02/07/2021 01/10/2021 31/12/2021 01/04/2022 01/07/2022

Change of parametrization in January 2021

© 2022 GMV Property - All rights reserved

Sentinel-3 POD Service – Performance of products

CNES PRECISE ORBIT EPHEMERIS (POE)

3D differences CNES POE vs. COMB • S3A • S3B

Sentinel-3 POD Service – Performance of products

TUD RAPID

01/01/2021 02/04/2021 02/07/2021 01/10/2021 31/12/2021 01/04/2022 01/07/2022

Generated by TU Delft for QC purposes

- @ 18 20h of next day
- Makes use of Integer Ambiguity Resolution

n

23.0 25 22.0 E 20 13.8 15 -12.2 10.69.7 8.8 788.1 10 6.5 5.8

PERFORMANCE SUMMARY OF RADIAL ERRORS

NEXT STEPS

IGS: New GNSS PCO/PCV (ANTEX); Galileo fixed IGS: New GNSS orbits, clocks and biases; long filenames \geq

NEXT STEPS

- IGS: New EOPs / ERPs (finals2000A.data)? \geq
- ILRS: New SLR station's coordinates \geq

IGS: New mean pole model

- IDS: New DORIS station's coordinates
- CPOD: New Sentinels PCV map (ANTEX) \geq
- CPOD/EGP: New GNSS orbits and clocks
- WHEN: 27/11/2022
- WHY: Periodic realization of ITRF: 94, 96, 97, 2000, 05, 08, **14**, **20**
- **IMPACT:**

ITRF 20

 \geq

- Careful orchestration to use ITRF products on NRT / STC / NTC
- Need of reprocessing?

FOCUSPOD WHAT: substitution of NAPEOS with **focusPOD**, a new GMV's POD SW

NEXT STEPS

- > Written from scratch in C++ / Python
- > Designed as a library
- Developed to keep same performance (accuracy & timeliness)
- WHEN: 31/12/2022
- WHY:
 - Required by the CPOD#3 ITT (no more ESA's CFIs)
 - To enhance performance (timeliness, accuracy, manoeuvres)
 - Develop service/micro-service architectures
 - Future developments (raw & network processing, etc.)

IMPACT:

- > Transparent to final users
- Validation period: Nov+Dec 2022

Generation timeliness CPOD ROE

• S-3A • S-3B

NEXT STEPS

USE OF COST-G

- WHAT: International Combination Service for Time-variable Gravity Fields (COST-G)
 - <u>https://cost-g.org/</u>
 - > See next presentation (Copernicus Sentinel-3 POD with COST-G)
- WHEN: First half of 2023 (To be agreed by CPOD QWG)
- WHY: To improve the accuracy and stability of products
- IMPACT:
 - > Better accuracy and stability of orbital products
 - > To update the geopotential quarterly
 - > Dependency with COST-G

NEXT STEPS

IAR in STC / NRT

- WHAT: Integer Ambiguity Resolution in shorter timeliness
 - Use GNSS biases from EGP on STC/NRT POD
 - Enhance robustness of STC/NRT POD
 - Exhaustive experimentation to confirm expected results \geq
- WHEN: First half of 2023; first in STC, then in NRT
- WHY: To improve the accuracy and stability of products
- IMPACT: Better accuracy and stability of STC / NRT products

STC IAR

Sentinel-3 POD Service – Performance of products

Page 22

© 2022 GMV Property – All rights reserved

Sentinel-3 POD Service – Performance of products

REDESIGN OF CPOD SERVICE

- WHAT:
 - To enhance the use of DBs to archive processing metrics, QC, monitoring.

data

- To orchestrate processing using a modern service or micro-service architecture.
- WHFN: 2023

WHY:

- To optimize the hardware infrastructure
- To improve the timeliness of products
- To develop new products based on data

IMPACT:

- Better timeliness of products
- Better quality control \geq
- More data to exploit \geq

Products

CONCLUSIONS

CONCLUSIONS

- Mature service: +8 years of continuous operations
- Significant improvement of accuracy and timeliness with respect to original requirements
- Big changes in the following month / year: ITRF20, focusPOD, COST-G, IAR, DBs & Services

Thank you

Copernicus POD Service

Jaime Fernández (GMV)

Carlos Fernández (GMV) Pierre Féménias (ESA/ESRIN) Carolina Nogueira Loddo (EUMETSAT)

