

A New Large-Scale Sentinel-2 Benchmark Archive and A Three-Branch CNN

Gencer Sumbul¹, Marcela Charfuelan³, Begüm Demir¹, Volker Markl^{2,3}

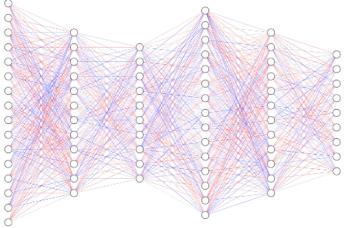
¹Remote Sensing Image Analysis (RSiM) Group, TU Berlin ²Database Systems and Information Management (DIMA) Group, TU Berlin ³Intelligent Analytics for Massive Data Research Group, DFKI GmbH

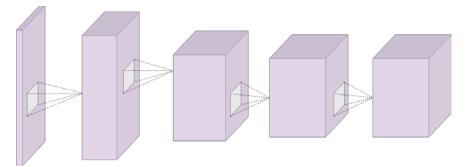
Outline

1 Introduction

- 2 Existing Benchmark Archives in Remote Sensing
- 3 BigEarthNet: Large-Scale Sentinel-2 Benchmark Archive

- 4 Three-Branch CNN
- 5 Experimental Results
- 6 Conclusion and Future Developments




.....

Introduction

- One of the most challenging and emerging applications in remote sensing (RS) is related to the accurate description of RS images present in the archives.
- Recent advances in deep learning have attracted great attention RS due to high capability of deep networks, e.g.,
 - Convolutional Neural Network;
 - Recurrent Neural Networks;
 - Generative Adversarial Networks.

✓ To train such networks, very large training sets are needed with a high number of annotated images.

Existing Benchmark Archives in RS

Archive Name	Image Type	Annotation Type	Number of Images
UC Merced	Aerial RGB	Single Label	2100
		Multi-Label	2100
WHU-RS19	Aerial RGB	Single Label	1,005
RSSCN7	Aerial RGB	Single Label	2,800
SIRI-WHU	Aerial RGB	Single Label	2,400
AID	Aerial RGB	Single Label	10,000
NWPU-RESISC45	Aerial RGB	Single Label	31,500
RSI-CB	Aerial RGB	Single Label	36,707
EuroSat	Satellite Multispectral	Single Label	27,000
PatternNet	Aerial RGB	Single Label	30,400

Problem: Publicly available RS image archives contain only a small number of annotated images and a large-scale benchmark archive does not yet exist.

State of the Art Solutions

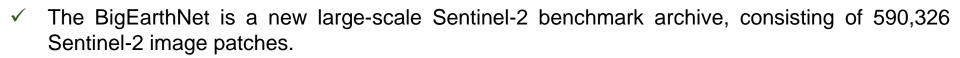
 ✓ Use of deep learning models pre-trained on large scale computer vision archives (e.g., ImageNet)

Problem: Differences on the characteristics of images between computer vision and RS.

Limitations on Existing Archives in RS

✓ Existing RS archives contain images annotated by single high-level category labels.

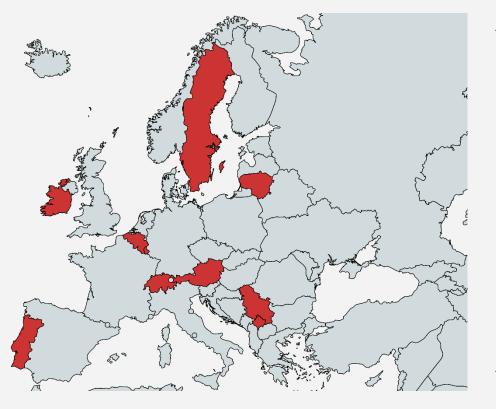
farmland



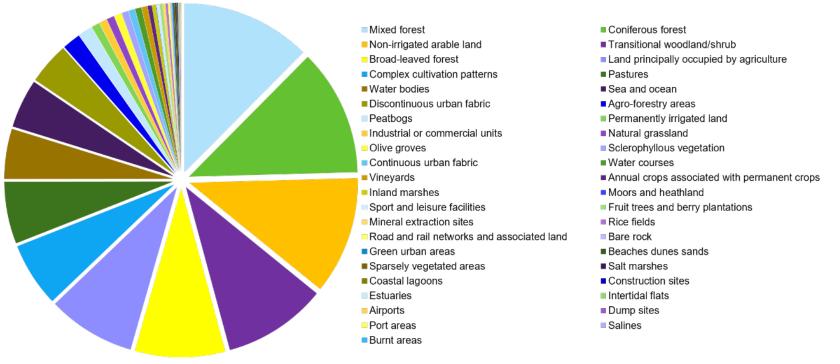
non-irrigated arable land, vineyards, pastures, land principally occupied by agriculture

Problem: RS images generally contain multiple classes associated to different landcover class labels (i.e., multi-labels).

 Most of the benchmark archives contain Aerial images that include only RGB image bands.



✓ To construct the BigEarthNet, 125 Sentinel-2 tiles (associated to cloud cover percentage less than 1%) acquired between June 2017 and May 2018 were selected.


 Considered tiles are distributed over the 10 countries of Europe:

ود ود

- Austria
- Belgium
- Finland
- Ireland
- Kosovo
- Lithuania
- Luxembourg
- Portugal
- Serbia
- Switzerland
- All the tiles were atmospherically corrected.

- Selected tiles were divided into 590,326 non-overlapping image patches, each of which has size of 120x120 pixels in 10 meter resolution.
- Each image patch is associated with one or more land-cover class labels provided from the CORINE Land Cover (CLC) database of the year 2018 (CLC 2018).
- ✓ It is produced with assistance from the European Environment Agency's Eionet network.

G. Sumbul, M. Charfuelan, B. Demir, V. Markl

✓ The number of labels associated with each image patch varies between 1 and 12, whereas 95% of patches have at most 5 multi-labels.

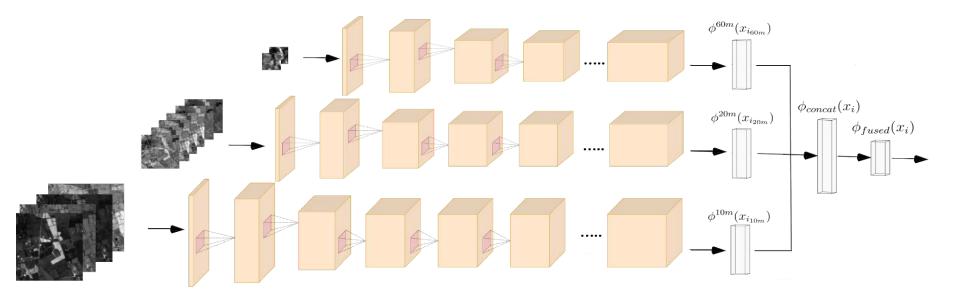
Continuous urban fabric, Green urban areas

Non-irrigated arable land, Fruit trees and berry plantations, Pastures

, Coniferous forest, D Mixed forest, Water bodies, Transitional woodland/shrub.

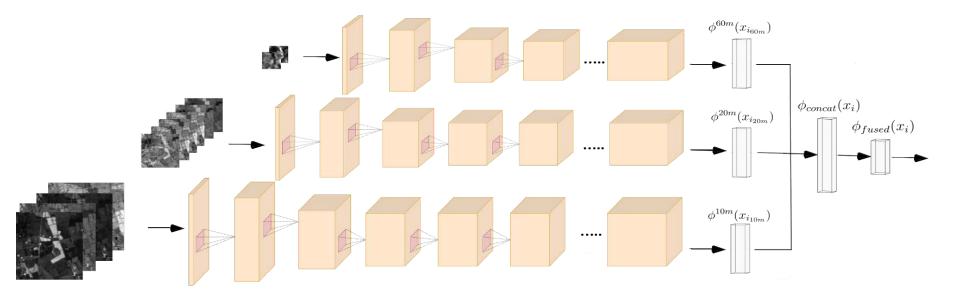
Discontinuous urban fabric, Construction sites, Green urban areas

Images acquired in different seasons are considered.


Seasons	Number of Image Patches		
Autumn	154,943		
Winter	117,156		
Spring	189,276		
Summer	128,951		

Three Branch CNN (TB-CNN)

- ✓ TB-CNN includes three different convolutional branches specifically designed for different spatial resolutions of Sentinel-2 bands.
- ✓ Each branch acts as a feature extractor for different resolutions



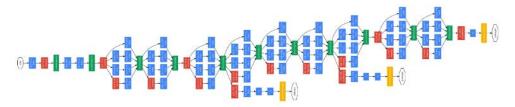
Three Branch CNN (TB-CNN)

- ✓ For the first and second branches developed for 60m and 20m resolutions, 2x2 filters and 3x3 filters are used, respectively, throughout the layers.
- ✓ 5x5 filters for initial layers and 3x3 filters for deeper layers are used for the last branch, which accepts 10m resolution bands.

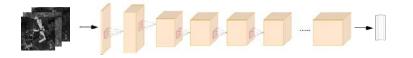
Applications on BigEarthNet

RSĩ

Query Image


Retrieved Images

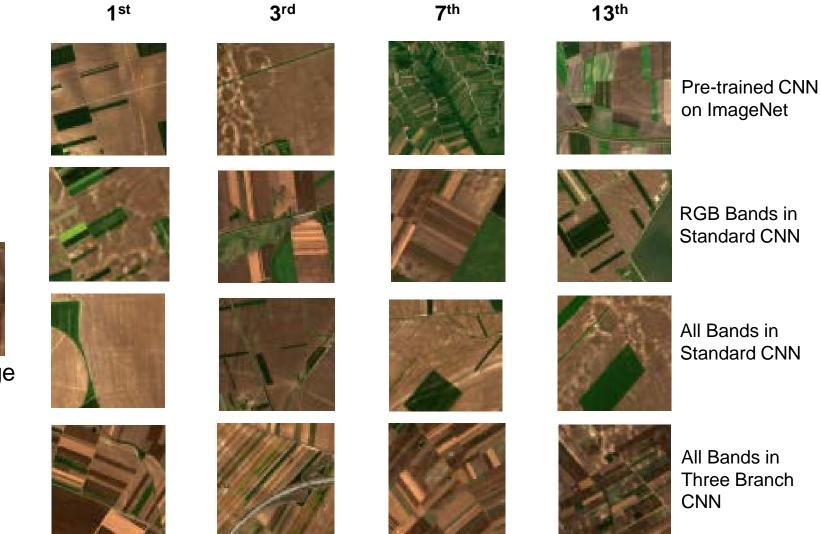
Olive groves Land principally occupied by agriculture **Broad-leaved forest** Transitional woodland/shrub Water bodies


Design of Experiments

- \checkmark We have compared the results with those obtained by:
 - Fine-tuning the last layer of Inception-v2 pre-trained on ImageNet.

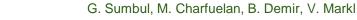
• Standard CNN architecture trained on only RGB bands

• Standart CNN architecture trained on all spectral bands


Methods	Recall	F ₁ Score	F ₂ Score
Pre-trained CNN on ImageNet*	40.75 %	0.4171	0.4085
RGB Bands in Standard CNN	54.72 %	0.5543	0.5451
All Bands in Standard CNN	57.20 %	0.6083	0.5812
All Bands in Three Branch CNN	70.62 %	0.6519	0.6763

* We apply fine-tuning to the pre-trained Inception-v2 architecture.

Results of Content Based Image Retrieval



Query Image

Results of Content Based Image Retrieval

Query Image

Non-irrigated arable land

Pre-trained CNN on ImageNet

Industrial or commercial units, Non-irrigated arable land

RGB Bands in Standard CNN

Non-irrigated arable land, Pastures, Water bodies All Bands in Standard CNN

Discontinuos urban fabric, Non-irrigated arable land All Bands in Three Branch CNN

le lin

Non-irrigated arable land

Conclusion and Future Developments

- ✓ We have introduced a large-scale benchmark archive that consists of 590,326 Sentinel-2 image patches annotated by multi-labels, for RS image understanding.
- BigEarthNet will make a significant advancement for the use of deep learning in RS by overcoming current limitations of the existing archives.
- ✓ We plan to regularly enrich the BigEarthNet by increasing the number of annotated Sentinel-2 images.
- ✓ We are currently working on designing and implementing a scalable architecture for massive processing and analysis of images in the BigEarthNet.

http://bigearth.net/

We would like to thank to all RSiM and DIMA group members!

G. Sumbul, M. Charfuelan, B. Demir, V. Markl