Tropospheric ozone column dataset derived by combination of TROPOMI and limb satellite measurements

Viktoria Sofieva, Risto Hänninen, Monika Szelag, Mikhail Sofiev, Hei Shing Lee, Johanna Tamminen Finnish Meteorological Institute

Christian Retscher

ESA/ESRIN

ESA Science for Society Open Call project 2018-2020

Synergy of Using Nadir and Limb Instruments for Tropospheric ozone monitoring

• Scientific objective:

Application of residual method to create tropospheric ozone column data

- TROPOMI combined with MLS, OMPS-LP, OSIRIS
- OMI combined with MLS, GOMOS, MIPAS, SCIAMACHY, OSIRIS, OMPS-LP
- Novelty and challenge: stratospheric ozone is estimated using data from several satellite instruments
- Residual method: the ozone in the UTLS has nearly the same abundance as the lower tropospheric ozone, both much smaller than stratospheric ozone column
- We used the FMI CTM SILAM for various feasibility studies, optimal data interpolation, and improvements in the UTLS

Tropospheric ozone column by residual method: methodology in general

• Clear-sky total ozone column from nadir instruments (TOC)

 creating high-horizontal resolution stratospheric ozone column by combining ozone profiles from several limb instruments (SOC)

• TrOC= TOC- SOC

3

1°x1° spatial resolution

Daily TrOC

Averaging

Monthly mean TrOC

Gridded clear-sky TOC from nadir data

- Clear sky: cloud fraction <0.2
- Simple averaging in 1°x1° spatial bins
- Random uncertainties:

$$\sigma^2 = \frac{1}{N} \sum_i \sigma_i^2 + \frac{1}{N} \operatorname{var}(\rho_i)$$

TROPOMI Level 3 total ozone column data (left) and random uncertainty (right) for 1 October 2018

TROPOMI TOC random uncertainties have been validated

Thanks to small pixel size of TROPOMI, the a-posteriori estimate of random uncertainties using the structure function method is possible

TROPOMI TOC random error estimates are realistic for clear-sky measurements

Atmos. Meas. Tech., 14, 2993–3002, 2021 https://doi.org/10.5194/amt-14-2993-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Atmospheric Measurement Techniques

Viktoria F. Sofieva¹, Hei Shing Lee^{1,2}, Johanna Tamminen¹, Christophe Lerot³, Fabian Romahn⁴, and Diego G. Loyola⁴

¹Space and Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland

²Atmospheric Sciences Department, University of Helsinki, Helsinki, Finland

³Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

⁴German Aerospace Centre (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, Germany

Correspondence: Viktoria F. Sofieva (viktoria.sofieva@fmi.fi)

Limb satellite data

- All datasets are from the HARMonized dataset of Ozone profiles(HARMOZ) developed in ESA Ozone_cci
- Accuracy and coverage in the UTLS is limited

Table 1. Information about the datasets used in the analyses

Instrument/ satellite	Processor, data source	Time period	Local time	Estimated precision	Profiles per day
OSIRIS/ Odin	USask v5.10	2011 – present	6 a.m., 6 p.m.	2-10%	~250
GOMOS/ Envisat	ALGOM2s v1.0	2002 - 2011	10 p.m.	0.5–5 %	~110
MIPAS/ Envisat	KIT/IAA V7R_O3_240	2005 – 2012	10 p.m., 10 a.m.	1–4%	~1000
SCIAMACHY/ Envisat	UBr v3.5,	2002- 2012	10 a.m.	1-7%	~1300
OMPS/ Suomi NPP	USask 2D v1.1.0,	2012- present	1:30 p.m.	2-10%	~1600
MLS/Aura	NASA v. 4.2	2004- present	1: 45 a.m and p.m.	1-7 %	~3500
10S-10N July 2008					

Homogenized and interpolated dataset of ozone profiles

Homogenization of ozone profile data from the limb satellites

Interpolation of the limb profiles from each day to 1°x1° horizonal grid

A smooth transition to the adjusted model data below the tropopause

Homogenization

• Bias correction

 $\sigma^2_{ex-poste}$

A-posteriori

uncertainty

- > MLS is reference
- > Biases are evaluated for each month
- Validation/ a posteriori estimation of random uncertainties

Natural

SILAM

from

variability

40 20

-20

 $=s^2-\sigma_{nat}^2$

Sample

variance

 $\Delta = \sigma_{ex-poste} - \sigma_{ex-ante}$

OMPS (DU/km)

MLS (DU/km)

Horizontal interpolation

- A kriging-type interpolation at each pressure level
 - Weighted mean of data in a neighborhood
 - Weights are inversely proportional to total uncertainties
 - The mismatch uncertainties are estimated using the SILAM model

$$x(\mathbf{r}) = \sum_{i} w_{i} x(\mathbf{r}_{i}),$$

$$\sigma_{tot,i}^{2} = \sigma_{noise,i}^{2} + D(\mathbf{r}_{i} - \mathbf{r})$$

Transition to the model profiles in the troposphere

- Satellite data have limited accuracy, non-homogeneous and rather sparse coverage below the tropopause
- We extended the satellitebased ozone profiles to lower altitudes by using the smooth transition to the adjusted SILAM profiles
- The linear transition is performed in such a way that above 200 hPa the profile follows fully the experimental data and below 400 hPa - fully the model data.

Illustration of transition to model-adjusted profiles at lower altitudes for tropical (left) and polar region (right)

Validation of ozone profiles against ozonesondes

 10^{2}

-2

0

Ozone Difference (DU/km)

2

-50

0

Ozone Difference (%)

10

-50

Ozone Difference (%)

-2

0

Ozone Difference (DU/km)

2

- The biases are small in both stratosphere and the troposphere;
- the inter-percentile range of differences is a few percent in the stratosphere and in the range of 10-50 % in the UTLS and the troposphere.

Stratospheric ozone column and uncertainties

Computing the stratospheric ozone column from the highresolution profiles is rather straightforward. The integration can be done from the tropopause upwards (we use 55 km as the upper integration limit), or from a certain altitude level. In our analyses, we use 3 km below the tropopause as a lower limit.

Stratospheric ozone column, SOC, (DU) from tropopause (left top) and from 3 km below the tropopause (right top) computed from 1°x1° merged (homogenized and interpolated) limb ozone profiles. The corresponding uncertainties are shown in bottom panels.

Results

- Monthly 1°x1° global tropospheric ozone column datasets
 - OMI-LIMB
 - TROPOMI-LIMB
- The global distributions of tropospheric ozone exhibit enhancements associated with the tropospheric sources

50

45

40

35

30

25

-140

Associated uncertainties of tropospheric ozone

- Uncertainties are estimated via error propagation through the all steps of the inversion
- Typical uncertainties of TROPOMI-LIMB tropospheric ozone are 4-8 DU

Data access: https://nsdc.fmi.fi/data/data_sunlit.php

Main datasets

- Monthly 1°x1° global tropospheric ozone column dataset using OMI and limb instruments
- Monthly 1°x1° global tropospheric ozone column dataset using TROPOMI and limb instruments
- Daily 1°x1° interpolated stratospheric ozone column from limb instruments

THANK YOU!

Atmos. Meas. Tech., 15, 3193–3212, 2022 https://doi.org/10.5194/amt-15-3193-2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Synergy of Using Nadir and Limb Instruments for Tropospheric Ozone Monitoring (SUNLIT)

Viktoria F. Sofieva¹, Risto Hänninen¹, Mikhail Sofiev¹, Monika Szelag¹, Hei Shing Lee^{3,4}, Johanna Tamminen¹, and Christian Retscher²

¹Finnish Meteorological Institute, Helsinki, Finland
²ESA/ESRIN, Frascati, Italy
³Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
⁴Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland

Correspondence: Viktoria F. Sofieva (viktoria.sofieva@fmi.fi)