

Validation for the EarthCARE observations with use of spaceborne lidar ACDL and ground-based lidar-net over China

(Rome), Italy

Guangyao Dai¹, Songhua Wu¹, Kangwen Sun¹, Wenrui Long¹, lidar group¹,

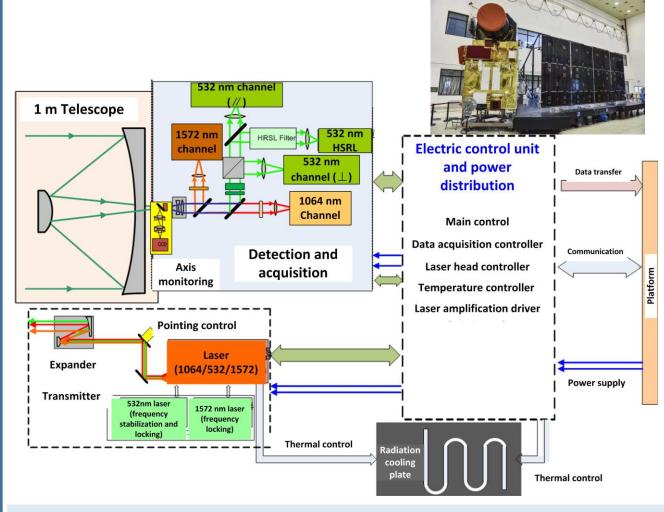
Jiqiao Liu², Weibiao Chen², Shengguang Qin³, Xitao Wang³, Rongzhong Li³

1 Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China

2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China

3 Qingdao Leice Transient Technology Co., Ltd., Qingdao, 266100, China

2023/11/16 @ ESA-ESRIN



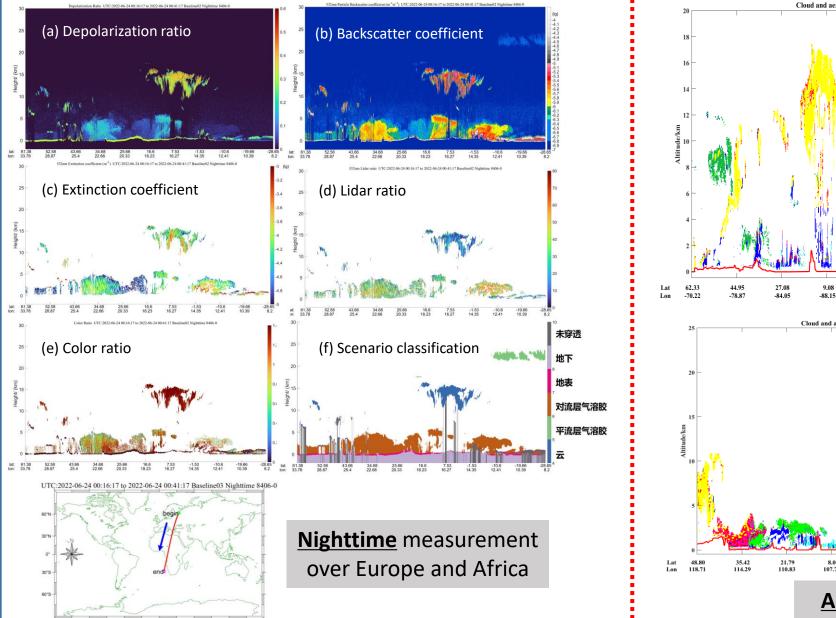
1. ACDL/DQ-1 introduction and comparison with EarthCARE

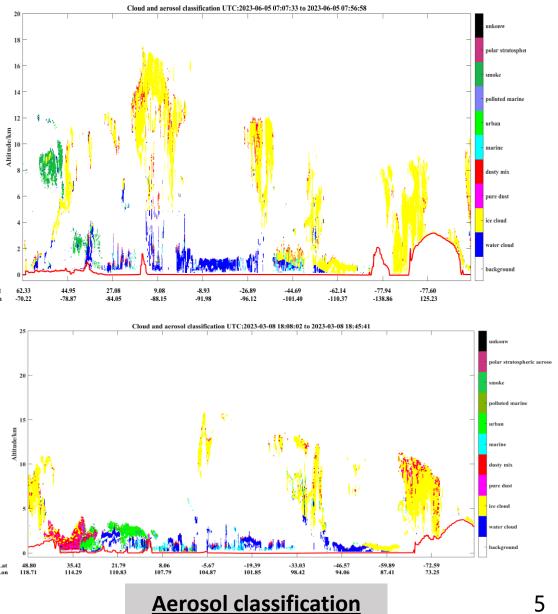
2. Recent lidar instruments at OUC

3. Summary

2. ACDL/DQ-1 introduction

The first spaceborne lidar (IPDA) for CO2 detection in the world

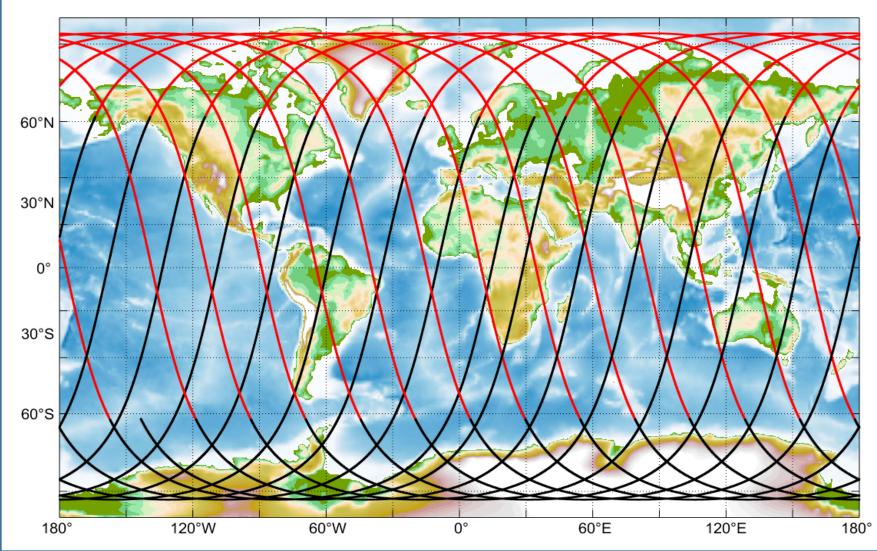

The first spaceborne Iodine-based HSRL working at 532nm in the world


Specifications	Parameters		
Wavelengths	532nm, 1064nm and 1572nm;		
Laser energy	≥130mJ@532nm		
	≥190mJ@1064nm		
	≥40mJ@1572nm		
Divergence	50µrad		
Stability of the laser	1572nm: 0.6MHZ@10000s		
linewidths	1064nm: 5MHz@10000s		
PRF	20Hz@1572nm (On/Off <u>dual-pulse</u>)		
PKF	20Hz@532nm and 1064nm (dual-pulse)		
Telescope aperture	<u>1000mm</u>		
FOV	190µrad		
HSRL	lodine cell: OD > 25dB		
	532nm HSRL		
	532nm parallel-polarized		
Receiver channels	532nm cross-polarized		
	1064nm aerosol		
	1572nm CO2		

1. ACDL/DQ-1 introduction: Data products

level	Data processing	Data products	Format
Level 0	The observation data obtained by downlinking multi-packet data integrity inspection and data splicing through the two channels of the satellite.	Raw data	RAW
Level 1A	Process the level 0 aerosol data, obtain the profiles of 532 nm and 1064 nm channels, with the geographic location and height corrected.	Profiles data of 532 nm and 1064 nm channels	HDF5
Level 1B	Process the level 0 CO2 data, obtain the profiles of 1572 nm channel, with the geographic location and height corrected.	Profiles data of 1572 nm channel	HDF5
Level 2A	Attenuated backscatter coefficient with systematic constant correction	Attenuated backscatter coefficient	HDF5
Level 2B	Differential Absorption Optical Depth (DAOD) products	DAOD	HDF5
Level 2C	Cloud and aerosol products including extinction coefficient, backscatter coefficient, depolarization ratio, AOD, lidar ratio and color ratio (vertical resolution: 50 m); (Horizontal resolution: 10km/3.3km adjustable at this moment);	Cloud and aerosol optical properties	HDF5
Level 2D	XCO2	XCO2	HDF5

1. ACDL/DQ-1 introduction: Aerosol and cloud optical properties

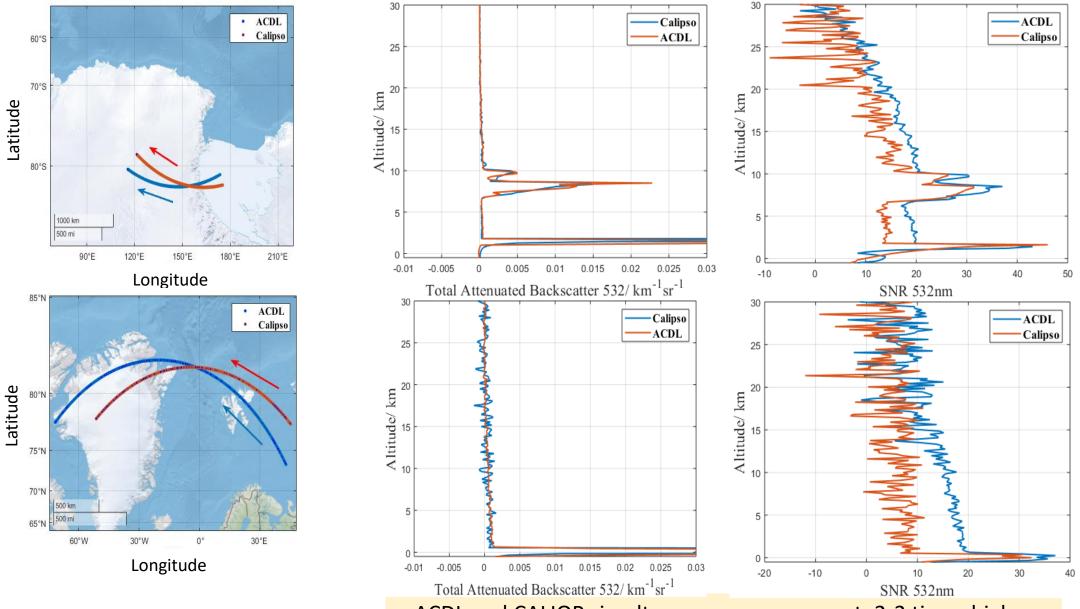


1. ACDL/DQ-1 introduction: orbits

Satellite trajectory during 24th June, 2022 as an example

Red denotes the daytime/ascending orbit, Black represents the nighttime/descending orbits.

The ACDL/DQ-1 orbits in a sunsynchronous orbit at 705-km altitude with an ascending node equator crossing time of <u>13:20 LST.</u>


The orbit inclination of <u>98° provides</u> coverage between 82° N and 82 ° S, with orbit tracks that repeat around 51 days.

1. ACDL/DQ-1 introduction: orbit quick look and prediction

Official na	me Space	Surveillar	nce Catalo	og Numbe	r Ow	vner		Operational Status	Data Source
DAQI 1	5225	7			Peo	People's Republic of China		Operational	AGI's Standard Object Data Service
Satellite Tool Kit (STK): an analysis engine for calculating the position and attitude of the satellite at any given moment, and DQ1 has been									
uploaded to the SSC coded satellite database, which can be easily used for satellite orbit display and orbit prediction.						K			
for satellite	e orbit displ	ay and o	rbit prec	liction.				0401 1 0000 020 -020 -00 -00 -00 -00	00 - 00 (20 (30
Civil Air Patrol Use Satellite-DAQI_1_5225	Only	xport prec the		ellite orbi oordinate		ation in			
Time (UTCG)	Lat (deg)	Lon (deg)	Alt (km)	x (km/sec)	y (km/sec)	z (km/sec)	WHY I		Alleria
14 Nov 2023 16:00:00. 14 Nov 2023 16:01:00. 14 Nov 2023 16:02:00. 14 Nov 2023 16:03:00. 14 Nov 2023 16:04:00. 14 Nov 2023 16:05:00. 14 Nov 2023 16:06:00. 14 Nov 2023 16:06:00. 14 Nov 2023 16:08:00. 14 Nov 2023 16:09:00. 14 Nov 2023 16:10:00.	$\begin{array}{rrrr} 000 & -56.012744 \\ 000 & -52.492071 \\ 000 & -48.952153 \\ 000 & -45.396839 \\ 000 & -41.828887 \\ 000 & -38.250341 \\ 000 & -34.662784 \\ 000 & -31.067481 \\ 000 & -27.465491 \end{array}$	-24.985197 -27.045827 -28.805824 -30.342215 -31.708558 -32.943213 -34.074394 -35.123352 -36.106453 -37.036567 -37.924025	722.533279 721.312729 720.013637 718.653991 717.252554 715.828577 714.401510 712.990699 711.615089 710.29229 709.041488	4.725716 4.477683 4.212525 3.931459 3.635763 3.326771 3.005872 2.674498 2.334122 1.986250 1.632413	-4.513284 -4.421685 -4.310097 -4.178806 -3.858701 -3.670903 -3.465435 -3.243021 -3.004474 -2.750684	3.667557 4.069521 4.455234 4.823135 5.171731 5.499601 5.805403 6.087882 6.345874 6.578309 6.784223	AGI	Earth Inertial Axes	

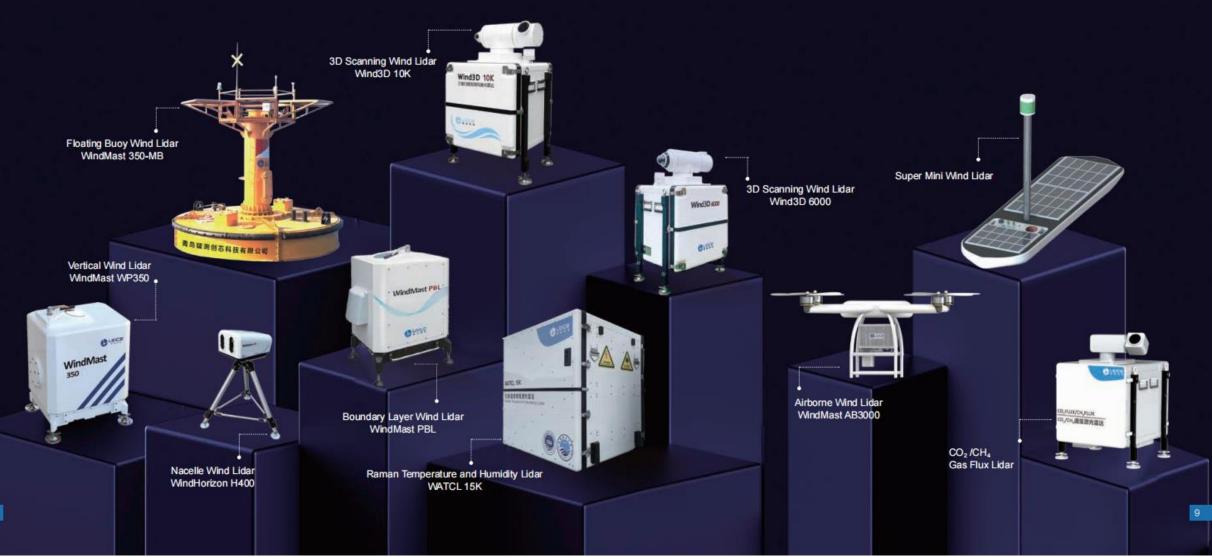
16 Nov 2023 02:27:15.076 Time Step: 60.00 se

1. ACDL/DQ-1 introduction: validation with CALIOP

ACDL and CALIOP simultaneous measurement: 2-3 times higher

2. Recent lidar instruments at OUC

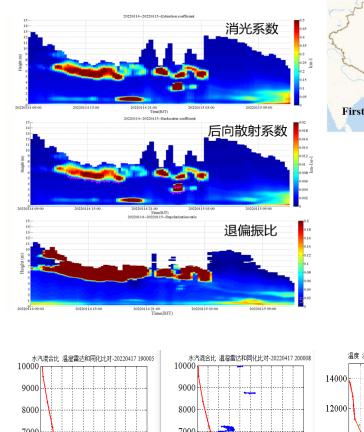
≻Raman lidar - WATCL

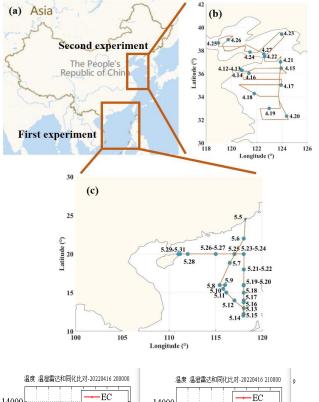

>Atmospheric and ocean HSRL

Coherent Doppler wind lidars

Coherent Doppler wind lidars and Raman lidar

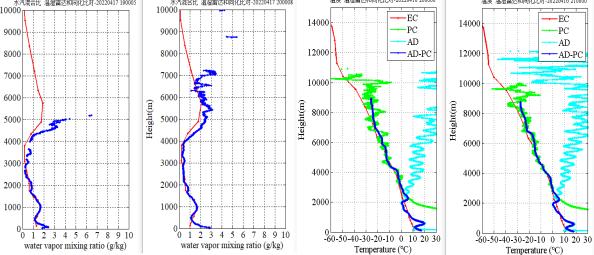
Our Products

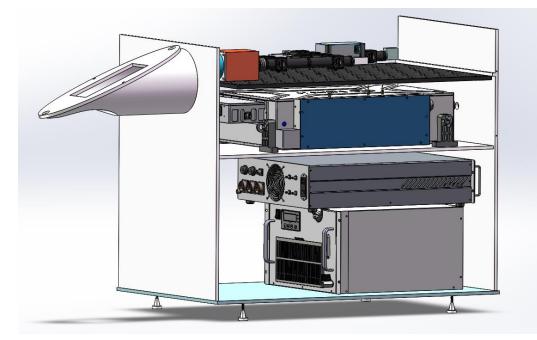



WATCL Raman Lidar

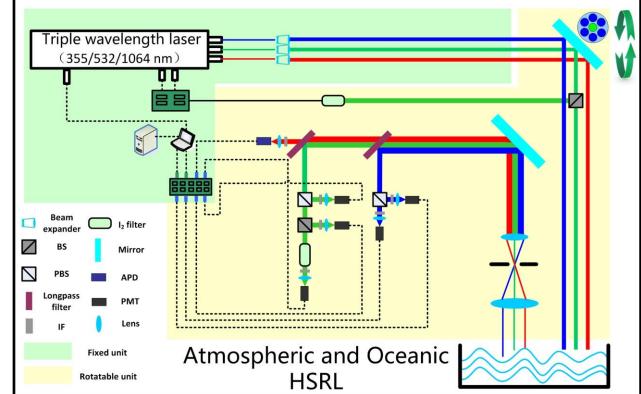
Height(m)

Specifications	Parameters
Wavelengths	<u>355nm;</u>
Laser energy	≥100mJ@532nm
PRF	20Hz@355nm
Telescope aperture	300mm/Cassegrain
Temporal resolution	1 s (adjustable)
Vertical resolution	7.5 m (adjustable)
Data products	α, β, δ, LR, WV, T, RH (6+ channels)




-PC

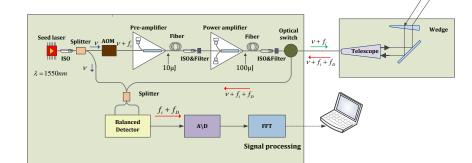
AD

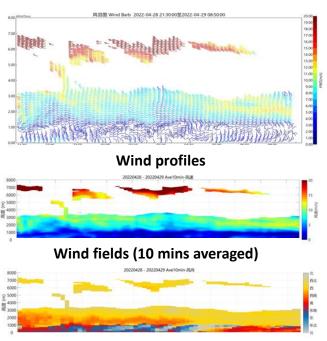

AD-PC

Atmospheric and Oceanic HSRL

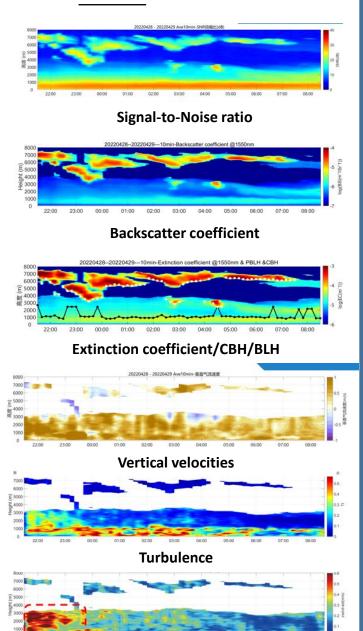
Specifications	Parameters
Wavelengths	<u>532nm/355nm;</u>
Laser energy	<u>≥10mJ@532nm; ≥10mJ@355nm;</u>
PRF	1kHz@532nm&355nm
Linewidth	100MHz@532nm
Temporal resolution	1 s (adjustable)
Vertical resolution	7.5 m (adjustable)
Data products	α, β, δ, LR

- □ The Atmospheric and Oceanic High-spectral-resolution lidar based on lodine absorption cell technique is under developing.
- □ The scheduled accomplishment time: April 2024
- One scheduled cruiser expedition: **September 2024**

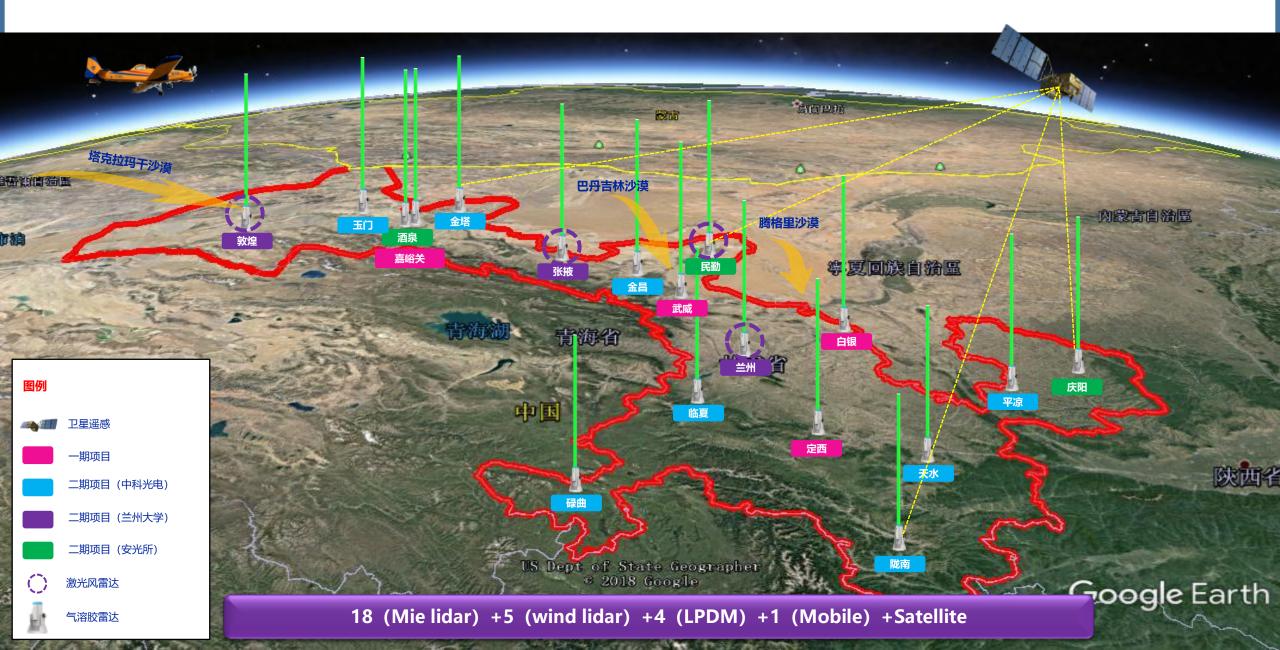

Coherent Doppler Lidar



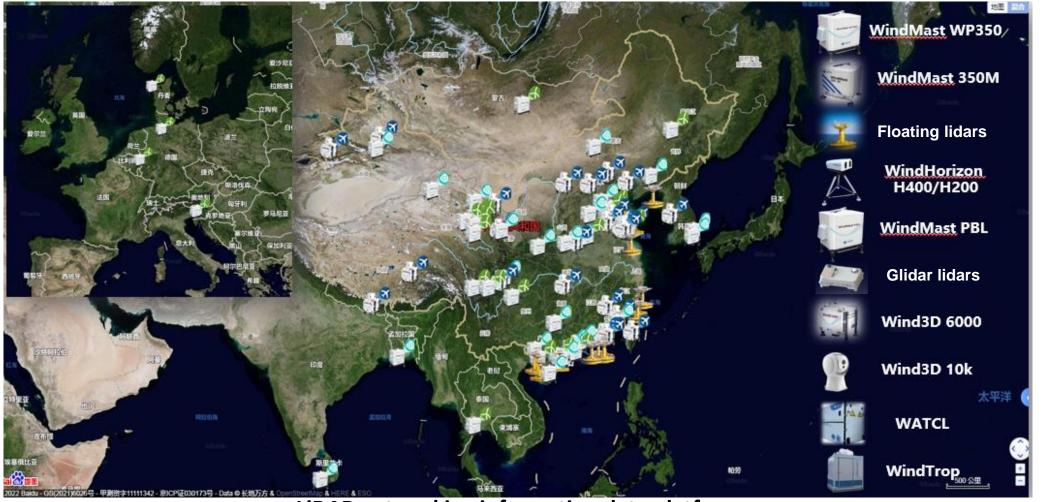
Paticles $f_D = 2\overline{V}_{LOS} / \lambda$


Qualification	Specifications					
Qualification	Wind3D 6000	WindMast PBL				
Wavelength	1550 nm	1550 nm				
Repetition rate	10 kHz	10 kHz				
Pulse energy	160 μJ	100 µJ				
Pulse width	100 ns to 400 ns	100 ns to 400 ns				
Detection range	80 m to 6000 m	30 m to 4000 m				
Data update rate	4 Hz	4 Hz				
Range resolution	15 m to 60 m	15 m to 30 m				
		Aerosol				

mainly measure wind/aerosol profiles in atmospheric/planet boundary layer (PBL) and lower troposphere <u>Be noted: Only parallel-</u> polarization components!



Wind directions (10 mins averaged)



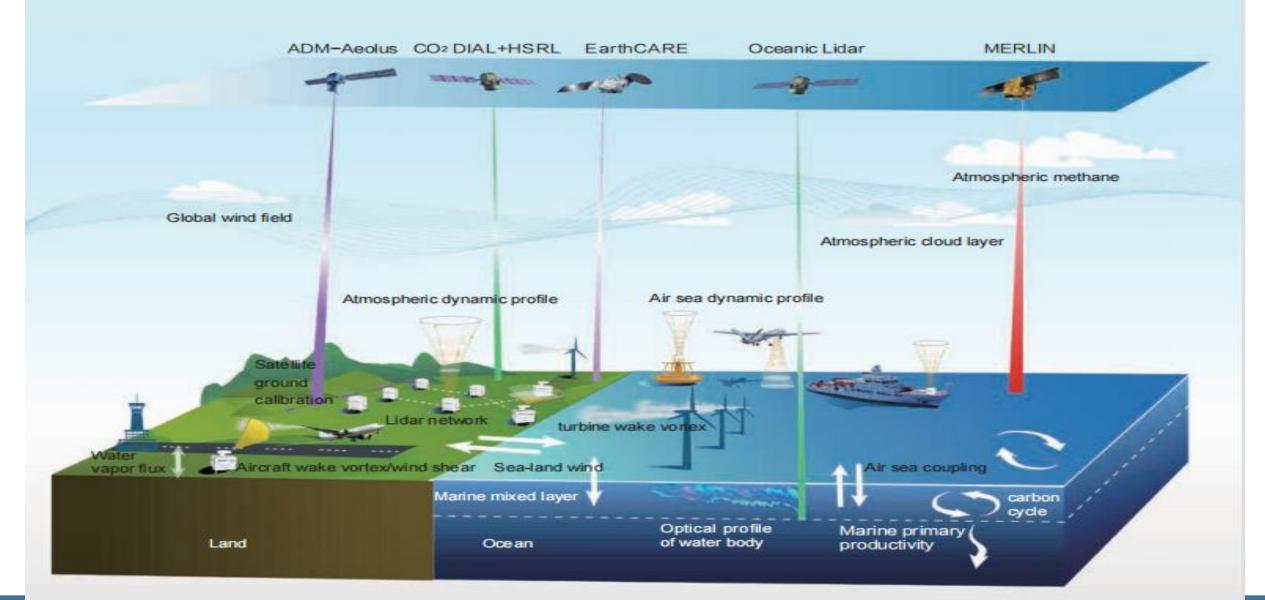
SD of the vertical velocities

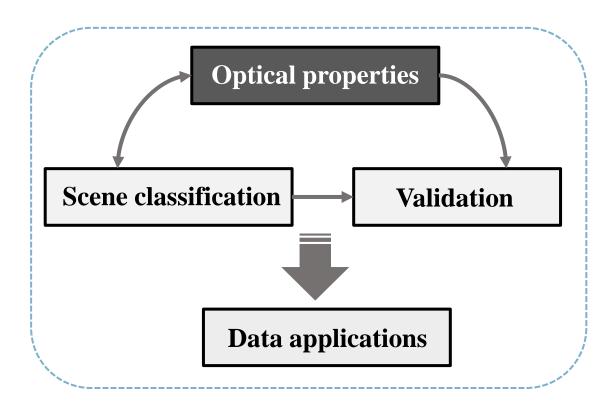
-"The Belt and Road" Lidar Network for Dust Monitoring-

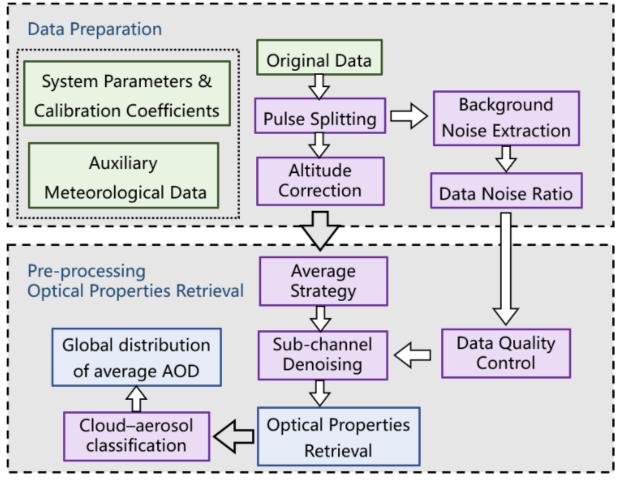
Onshore & Offshore Doppler LiDAR Network

LiDAR networking information data platform

- A multi source, multi type, and multi-dimensional information data platform helps improve the level of comprehensive air quality control services and refined meteorological monitoring and forecasting, pollution emergency prevention and control.
- In this project, all of the data are the potential reference data sources for EarthCARE CAL/VAL.


Shipborne Lidars in Navigation Observation of Oceanic and Atmospheric Profile


- 1. The first spaceborne lidar for simultaneously observation of CO2 and aerosol based on IPDA and HSRL techniques are introduced, including the data processing, orbit display and prediction.
- 2. The data products (including backscatter, extinction, depolarization ratio and lidar ratio) from ACDL/DQ-1 can be utilized for the cross-checking of data products from EarthCARE after the wavelength convert.
- 3. The lidar-net over China including HSRL, Raman Lidar, Doppler lidar is capable of providing simultaneous observation of aerosol profiles with EarthCARE. Actually the lidars are also be able to be applied for shipborne measurements.
- 4. We have already learnt some lessons during the CAL/VAL for Aeolus, which may benefit for the CAL/VAL for the EarthCARE.


Construction of "Ground-Sea-Air-Space" Stereoscopic Remote Sensing Monitoring System by Integrated Lidars

A data processing and optical properties retrieval method adapted to the specific characteristics of ACDL-A global observation dataset

