Introduction and objective

Substorm are usually associated with large ground geomagnetic disturbances at high magnetic latitudes and at the night as a consequence of changes in the ionospheric currents. During a substorm part of the energy in the magnetotail is transported towards the near-Earth by transient high-speed plasma flows, known as Bursty Bulk Flows (BBFs) that are coupled with the ionosphere via Field-Aligned Currents (FACs). The F-BURST project aims to study MI coupling using multi-spacecraft observations.

We plan to combine long-term ionospheric and magnetospheric data such as Swarm, Cluster, and MMS observations:
- Database of 2394 BBF in the magnetotail from MMS data performed by L. Richard et al (2022) https://zenodo.org/records/7528071
- We use Tsyganenko models to find the BBFs’ footprint into the ionosphere
- Swarm is used to study the behaviour of FAC during BBFs

BBF Statistics

The BBF were detected during the magnetotail season of MMS (Jun-Sep)

- BBFs have a orbital coverage bias
 - Gaussian distribution centered at $X_{GSM} = 5.80 \text{ Re}$ and $Y_{GSM} = 2.55 \text{ Re}$
 - Positive mean dipole tilt angle 18.1°
- The mean duration of the BBF is 3.49 minutes
- 89% of the events are Earthward directed
- ~75% of BBF occurs during calm geomagnetic conditions ($Kp < 3$ and -25 nT < Sym-h < 5 nT)

To reduce the orbital bias we plan to extend our database with BBFs detected by THEMIS and Cluster.

BBF footprint

Histogram of the BBFs footprint for all Tsyganenko models shows similar characteristics:
- Footprints are mainly clustered between
 - MLT 21-03
 - AACGM latitude 65-75°
- Maximum at pre-midnight

The footprint at pre-midnight is directly related with the BBF position at $T_{GSM} > 0$

SWARM Field-aligned currents

We use Swarm FAC from single spacecraft at the moment of the BBF observation plus 15 minutes.
- The signed mean value shows the usual pattern of R1 and R2 currents.
- Due to the orbital bias in summer season we observe:
 - Mean absolute value larger in north hemisphere than in the south hemisphere
 - Larger magnitudes in the midday sector due to higher conductivity of the ionosphere in the illuminated side.

- The seasonal and diurnal effect should be taken into account. We will focus in the region defined by the footprint

Future plans

- Include a set of BBF detected by Cluster and/or THEMIS
- Estimate the difference in the footprint location from different Tsyganenko models
- Use SwarmFAC package https://zenodo.org/records/7361439 to study the behaviour of FAC during BBFs

References: