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A data series correcting for local, persistent NWP stress-equivalent wind biases was produced
in the framework of the World Ocean Circulation (WOC) project, which led to the generation of
the so-called ERA* dataset [35], for the period 2010-2020. The ERA* product aims to correct
persistent errors of ERA5 reanalysis with the use of the varying scatterometer constellation over
time [4, 9].

State of art: ERA* and SC corrections

A data series correcting for local, persistent NWP stress-equivalent wind biases was 
produced in the framework of the World Ocean Circulation (WOC) project, which led to 
the generation of the so-called ERA* dataset [2], for the period 2010-2020. The ERA* 
product aims to correct persistent, local systematic errors of ERA5 reanalysis with 
the use of the varying scatterometer constellation. The rationale of the method is 
that when the scatterometer-NWP wind differences are accumulated over certain periods 
of time and used to correct for NWP local biases, it is possible to overcome sampling 
errors and maintain some of the scatterometers most beneficial features, i.e., those 
related to relatively small-scale ocean processes, such as wind-SST interaction and 
ocean-current relative winds, and furthermore, correct for the other small- and 
large-scale NWP parameterization and dynamical errors.

Default configuration: 
15-day time window

• Best performance in 
the tropics (reduction 
up to 8.9% error 
variance) [3]

• Globally 3.8 – 6.7% 
error variance 
reduction, depending 
on the available 
constellation

Global Numerical Weather Prediction (NWP) model sea-surface wind output is commonly 
used to force ocean models due to their time and space continuity. However, the 
output of the NWP models presents local biases, with one of the most systematic and 
longstanding biases in the sea surface wind direction [1]. After the assimilation of 
the stress-equivalent winds measured by scatterometers, the European Centre for 
Medium-Range Weather Forecasts (ECMWF) model output still presents the mentioned 
biases, which need to be corrected since they mostly represent unresolved geophysical 
processes by NWP models. 

ERA* method limitations:
• It only corrects local biases persistent over several days.
• It is very sensitive to scatterometer sampling, especially over shorter time 

windows.
• It doesn’t directly show NWP error dependence on both atmospheric and ocean state 

conditions.
• It has limitations in operational use: computationally expensive and need to shift 

temporal window (which in turn degrades performance).

Objectives

This work aims at creating a machine learning (ML) model for correcting the ECMWF 
ERA5 reanalysis stress-equivalent local wind biases. Several ML setups are 
evaluated, which look for the functional relationship between several oceanic and 
atmospheric variables and the persistent NWP biases as observed in the 
scatterometer-NWP differences. Such variables include ECMWF model parameters, such 
as stress-equivalent winds and their derivatives (curl and divergence), atmospheric 
stability related parameters, i.e., sea-surface temperature (SST), air temperature 
(Ta), relative humidity (rh), surface pressure (sp), as well as SST gradients and 
ocean currents [4]. 
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Persistent local wind biases globally for the zonal (a) and the meridional (b) components, i.e., 
scatterometer vs NWP differences accumulated over 30 days (February 2019).

The trained model doesn’t require scatterometer observations to produce the 
corrections and:
• It can be used in operational forecasting;
• It enhances reanalysis stress-equivalent wind products for the periods when 

scatterometer observations were not available.

• A data series correcting for local, persistent NWP stress-equivalent wind biases was produced
• in the framework of the World Ocean Circulation (WOC) project, which led to the generation of
• the so-called ERA* dataset [35], for the period 2010-2020. The ERA* product aims to correct
• persistent errors of ERA5 reanalysis with the use of the varying scatterometer constellation over
• time [4, 9].

Datasets and algorithms
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Results and discussion
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Model input variables:
• ERA5 stress-equivalent winds
• ERA5 mean sea-level pressure, air 

temperature, specific humidity, SST
• Derivatives wind components and SST 

gradients
• CMEMS global total surface current

Targets:
• Differences between ASCAT-A 12.5 km 

winds and ERA5 stress-equivalent wind 
components.

ML algorithms:
• Extreme Gradient Boosting (XGBoost)

→ Fast training on GPUs
• Fully-connected neural networks

→ Several hidden layers, dropout

The obtained preliminary ML models, 
which are only trained on a small 
subset of data show 9.9% error variance 
reduction globally vs ASCAT-A and 
reaching 13% in extra-tropics. ASCAT-A 
validation shows similar performance in 
Tropics and High Latitudes with 
reduction around 8%.

Against HSCAT-B the models show lower 
performance with up to 6.2% reduction 
globally. The best performance is still 
observed in extra tropics with 10.6% 
reduction; however, tropics show poor 
results compared to ASCAT-A validation. 
If compared to ERA* 15-day 
configuration, which was only validated 
against HSCAT-B, ML models outperform 
it in extra-tropics and in high 
latitudes, but ERA* performs much 
better in the tropics. 

The XGBoost shows slightly lower 
performance against HSCAT-B but is much 
faster when training the model.

Conclusions and future work
In this preliminary work, we demonstrate that it is possible to reduce ERA5 stress-
equivalent wind biases, based only on NWP atmospheric and oceanic output. At this stage, 
we only use the simplest fully-connected feed-forward neural networks and manually 
calculate the spatial gradients and derivatives, while future work will include the 
implementation of the convolutional neural networks architectures (CNNs) that will learn 
the filters required to extract the spatial relationships from the data. 
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Training:
• Preliminary models trained on a small 

subset 02/01 - 06/03 2020
• Training data was subsampled to 10% to 

accelerate the training.

Validation:
• Similar period but for previous year 

(01/02 – 30/04 2019)
• Against ASCAT-A scatterometer
• Against KU-band scatterometer HSCAT-B

→ Temporal coverage 3.5 hours apart
→ Sensible to rain and higher QC 

rejection rate, especially in the 
tropics

• Vector root mean square error (VRMS) 
and error variance reduction metrics.

Corrections for u and v-components predicted by NN 256-128-64-32 (top) and ERA* N15 scatterometer 
corrections (bottom) for 10/02/2019 AN 06 FC 06 

The plot on the left shows the 
spatial distribution of the 
mean VRMS difference between 
ERA5 and the model output 
corrected by neural network 
against ASCAT-A (top) and 
HSCAT-B (bottom). Green colors 
show the areas where the NN 
corrections are reducing ERA5 
errors and red colors mark 
where the NN model has higher 
VRMS than ERA5. There are 
significant differences in the 
validations against ASCAT-A 
and HSCAT-B, especially in the 
Inter-Tropical Convergence 
Zone (ITCZ). When compared to 
ASCAT-A the NNs generally 
reduce the errors of ERA5, 
however when using HSCAT-B as 
ground truth the performance 
of the model in the tropics is 
quite poor. 
This can be possibly explained 
by the high QC rejection rate 
for HSCAT-B in the presence of 
rain and the differences due 
to the diurnal cycle.

HSCAT-B stress-equivalent winds are also much closer to the background model winds used 
during the inversion which makes the reduction of the errors smaller.
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