

PROGRAMME OF THE EUROPEAN UNION

co-funded with

7th Sentinel-3 Validation Team Meeting 2022

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Intercomparison of OLCI's essential vegetation variables retrieved with Gaussian Processes using Google Earth Dávid D.Kovács¹, Pablo Reyes Muñoz¹, Matías Salinero Delgado¹, Santiago Belda^{1,2}, Katja Berger^{1,3} and Jochem Verrelst¹ 1 Image Processing Laboratory (IPL), University of Valencia, Spain 2 Applied Mathematics, University of Alicante, Alicante, Spain

3 Mantle Labs GmbH, Vienna, Austria

ESA UNCLASSIFIED – For ESA Official U

→ THE EUROPEAN SPACE AGENCY

Objectives:

 <u>To retrieve</u>: global biophysical maps of leaf chlorophyll content (LCC), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR) and fractional vegetation cover (FVC)

PROGRAMME OF THE EUROPEAN UNION

opernicus

EUMETSAT

- <u>To use</u>: OLCI TOA data and hybrid models trained with Gaussian Process Regression (GPR) in Google Earth Engine
- <u>To implement</u>: Whittaker's gap filling algorithm
- Intra-annual correlate our LAI/FAPAR GPR products against Copernicus & MODIS products

co-funded with

·eesa

Retrieval method:

- 1. Started with simulating canopy states: SCOPE model
- 2. SCOPE **TOC** simulations: upscaled to \Box **TOA** using **6SV** RTM^[1]

PROGRAMME OF THE

opernicus

EUMETSAT

- Coupling process realized by: Atmospheric Lookup table Generator (ALG)^[2] and Automated Radiative Transfer Models Operator (ARTMO)^[3]
- 4. GPR models were trained using TOA radiances

LCC LAI FAPAR FVC S3-TOA-GPR-1.0 models

[1]: Vermote et al. (1997)[2]: Vicent et al. (2020)[3]: Verrelst et al. (2012)

_ _ ■ ■ = = + ■ ■ = _ = ■ = = ■ ■ ■ ■ ■ = = = ₩ = ■

co-funded with

· e esa

5. **S3-TOA-GPR-1.0** models were introduced in Google Earth Engine (GEE) Input data for processing into vegetation traits:

L1B Earth Observation Full Resolution (EFR) product. From all 21 bands of OLCI onboard S3A and S3B

- Prediction and uncertainty algorithms based on matrix operations
- Global maps were generated 10 day intervals in 2019 at 5 km resolution
- 3 European study sites at 500 m resolution for land cover analysis
 - ➤ Iberian peninsula
 - ➤ Western Europe
 - ➤ Scandinavia

Google Earth Engine

PROGRAMME OF THE

opernicus

EUMETSAT

= II 🛌 == + II 💻 🚝 == II II = = = = 💷 🛶 🔯 II == = II 💥 📰 == II

· eesa

- 6. Cloud induced gap filling: Whittaker's smoother
 - Optimized penalty weight of function $\rightarrow \lambda = 100$
 - Gaps around low latitudes and polar regions
 - Directly implemented into GEE

co-funded with

Whittaker's governing linear system of equations. Penalty weight: λ =100

• GPR $-\lambda = 0.5$ EUMETSAT

·eesa

7th Sentinel 3 Validation Team Meeting 2022

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

PROGRAMME OF THE EUROPEAN UNION

opernicus

LAI (m^2/m^2) 0 0

· e esa

co-funded with

EUMETSAT

7th Sentinel 3 Validation Team Meeting 2022

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

FAPAR

Results:

LCC

EUMETSAT

Gap filled maps. June 2019, monthly averaged (5km resolution).

LAI

FVC

· = ■ ▶ = = + ■ + ■ ≡ = 1■ ■ ■ = = = ■ ■ ■ ■ ■ = = = ■

· eesa

PROGRAMME OF THE EUROPEAN UNION

Intra-annual comparison for the year 2019 (34 observations): LAI/FAPAR and Copernicus products (and additionally MODIS) European study areas R² >0.7 (LAI/FAPAR) Lower than 20° latitudes R²=0.5. Due to less seasonal dynamics. Pronounced yearly phenology yielded superior GPR retrievals

Pearson correlation of 2019 FAPAR: GPR vs CGLS

R² of 2019 FAPAR GPR vs CGLS

opernicus

EUMETSAT

·eesa

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

GPR vs MODIS

Correlation: FAPAR GPR vs CGLS / MODIS

GPR vs CGLS

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Correlation: FAPAR GPR vs CGLS / MODIS

7th Sentinel 3 Validation Team Meeting 2022

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

<u>**High correlation**</u> in l'Albufera and the Ebro delta. Both paddy (rice) fields

High correlation in deciduous forests along Eastern Europe. <u>0 correlation</u> on the Carpathian evergreen/sparse/snow covers Low correlation: low seasonality in rainforests along the Equator. Also negative correlation in the Namibian desert and shrublands

PROGRAMME OF THE

eesa

R

co-funded with

EUMETSAT

opernicus

EUMETSAT

opernicus

PROGRAMME OF THE EUROPEAN UNION

5

Land cover analysis (GPR vs. MODIS):

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

7th Sentinel 3 Validation Team Meeting 2022

Different CORINE land cover types were correlated **Evergreen & Broadleaf** forests Agricultural and Sparsely vegetated areas

Study areas in Europe. Maps retrieved at 500m resolution. Correlated different land covers in each region of interest.

13

7th Sentinel 3 Validation Team Meeting 2022 18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Conclusions:

- GPR models in GEE: efficient way to produce global maps with uncertainties
- Uncertainties with inter-tropical convergence zone clouds
- Further improvements with Gap-filling will solve this issue
- General consistency with CGLS and MODIS products
- Validity is related to vegetation seasonality

EUMETSAT

opernicus

PROGRAMME OF THE EUROPEAN UNION

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Thank you for your attention! Any questions?

PROGRAMME OF THE EUROPEAN UNION

opernicus

EUMETSAT

Dávid D.Kovács david.kovacs@uv.es

|+| 🔤 🖿 +- || 💻 🔤 🚍 || || || 🚍 🚍 🔚 🔤 🚺 💶 🔚 🖽 💥 🚍 🔤 ||+|

14

· eesa