DEVELOPING IMAGE PROCESSING CHAINS FOR THE THEIA LAND DATA CENTRE

PROVIDING NEAR REAL-TIME IMAGERY

PETER KETTIG (CNES) JOELLE DONADIEU (CNES)

Outline

- The Theia land data center
 - Purpose
 - Theia's role in the context of CNES' EO ground segments
- Muscate Theia's processing module
 - Workflow
 - Current status
- Analysis-ready data and respective improvements
 - Maja
 - LIS (Let it snow)
 - Wasp
 - Water quality
 - Biophysical parameters
- Conclusion and future work

The Theia land data center

What is Theia?

Purpose:

- Multi-agency Organization for the studies of continental surfaces
- Promote the use of satellite data by scientific community and institutional actors.

Addition of Processing center

- Open data access
- Analysis-ready data

Theia's role in the context of CNES' EO ground segments

Data is a key element

- Big amount of EO data available at CNES
- Databases are permanently growing

Theia's role in the context of CNES' EO ground segments

Data is a key element

- Big amount of EO data available at CNES
- Databases are permanently growing

- Sentinel 1,2,3 mirror of ESA
- On-demand processing

2019 ESA

Big data from Space 2019 - Munich

Theia's role in the context of CNES' EO ground segments

Data is a key element

- Big amount of EO data available at CNES
- Databases are permanently growing

- scientific usage)
- Spot 1-5 archive (SWH)
- Venus
- Sentinel
 - Landsat

Already more than 30 years of data !

- Sentinel 1,2,3 mirror of ESA
- On-demand processing

sentinel-1 sentinel-3

2019 ESA

Current status:

= Multi-satellite, multi-sensor ground segment for multitemporal data

- Goal: Offer near real-time images to the user
- Handling all steps: From arrival of L1C products to distribution
- Interfaces to:
 - Previous processing centers (PEPS, VIP, etc)
 - Processing chains
 - Computing center
 - Storage systems (Disks, bands...)
- \rightarrow Abstraction layer to all subsystems

Cloud instance:

- Deployable for other agencies and institutions
- Highly scalable
- Transparent addition of new processing chains
- To be set up on a DIAS platform

Current status:

Current status:

Presentation of the processing chains

- Traditional approaches combined with AI
- Set-up of multiple processing chains to generate value-added products:
 - Maja (Maccs Atcor joint algorithm)
 - Let-it-snow (LIS)
 - Wasp (Weighted average synthesis processor)
 - OSO (Land cover map)
- Improvements of the existing models

Upcoming:

- WaterColor (OBS2CO)
- Biophysical parameters

Maja (Maccs Atcor joint algorithm)

- Atmospheric correction/cloud detection
- Basis for all further pipelines
- Now supports use of CAMS and Meteorological data
- Executable distributed freely

Hagolle et al., CESBIO CNES

Maja (Maccs Atcor joint algorithm)

Deep learning studies ongoing:

- atmospheric correction
- cloud detection

Cloud detection:

- Combination of multiple source algorithms for the training set
- Validation using multiple hand labeled datasets
- Collaboration with experts of the physical processes
 - Separate detection of classes
 - Active learning

Comparison of Maja (left) and Sen2Cor (right) for the same date (Desjardins et al.)

Let-it-snow (LIS)

- Detection of snow surfaces on mayor mountain ranges
- Fusion of Landsat-8 and Sentinel-2 for higher coverage
- New version: Output of yearly snow-cover maps
- Code: Open source

Grizonnet et al., CNES CESBIO

15 © cnes

Wasp (Weighted average synthesis processor):

- Weighted average synthesis of a Level-2A time series
- Runs on Venus and Sentinel-2 inputs
- Production of monthly cloudfree composite images
- Soon:
 - To be run on all existing S2-tiles of Theia
 - Code: Open source

OSO (Land cover mapping):

- Uses on Landsat-8 (<2016) and Sentinel-2
- Based on a randomforest classifier
- Creation of a yearly land cover map for France
- Code: Open source

Inglada et al., CESBIO CNES

Analysis-ready data tomorrow

Biophysical parameters:

- Collaboration with the INRA laboratory
- Three neural network trained for Sentinel-2, Venus and Landsat-8 to produce:
 - LAI
 - FAPAR
 - Fcover

WaterColor (OBS2CO):

- Calculation of suspended particulate matter (SPM)
- To be run on inland waterbodies

Martinez et al., GET CNES

Conclusions and future work

Continuous researches together with industry, startups and laboratories

- Preparation of future EO missions and applications with innovative technologies
 - \rightarrow Artificial intelligence combined with traditional approaches

Perspectives

- Validation of (AI) implementations for operational services
- Deployment on new platforms (DIAS)

Thank you!

Backups

Core utility: Phoebus (a.k.a. the orchestrator)

https://www.orfeo-toolbox.org/

- Open-source remote sensing image processing library
- Large community and easy to contribute: <u>https://www.orfeo-toolbox.org/community/</u>
- Image algorithms written in C++ and wrapped into OTB applications
- Easy to use and to incorporate into Python scripts: in-memory connection of OTB applications: <u>https://www.orfeo-toolbox.org/CookBook/recipes/python.html</u>

Image processing toolboxes

Important set of optimized and generic image processing libraries inherited from legacy missions

- Image resampling, deconvolution, denoising, etc.
- Sensor modeling (camera model)
- Correlation, image matching, image mosaicking, fusion
- Atmospheric corrections (joint algorithm CNES-DLR)
- Segmentation, Classification, 3D...
- New: Tensorflow-module

Sub-set as open source library available on-line :

https://www.orfeo-toolbox.org/

Machine learning for cloud detection and transfer learning

Ongoing internal project

- Development of a new Deep Learning processing chain for cloud/snow/shadow detection in Sentinel-2 images
- Comparison with the output masks of MAJA

Illustration of cloud detection with MAJA on S2 images © Cesbio

Cloud detection in detail:

Creating an adaptable model

Different configurations for the output classes:

- Clouds (different types)
- Shadows (with and without)

Transfer learning approach

- ◆ Using existing models: Unet, VGG etc. → Variation with regularization techniques
- Adding inputs:
 - Sen2Cor
 - Fmask
- Accuracy (maja trained only): 82% F2-score
- Accuracy (combined with sen2cor): 85% F2-score

Unet illustration © Uni Freiburg

Cloud detection in detail

Cloud detection in detail

WaterColor (OBS2CO):

- Calculation of suspended particulate matter (SPM)
- To be run on inland waterbodies
- Selected regions:

Martinez et al., GET CNES

30 © cnes