

Total Column Water Vapour from the Split-Window Bands for EarthCARE MSI and its Possible Applications

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop 13 - 17 November 2023

J. El Kassar¹, C. Carbajal Henken¹, R. Preusker¹ November 14, 2023

¹Freie Universität Berlin, Institute of Meteorology, Berlin, Germany

- water vapour (WV) is <u>the</u> key ingredient in cloud formation and weather: humidity-aerosol-cloud interactions
- WV absorbs across a wide range of wavelengths and plays crucial role in the radiation budget
- a warmer/hotter atmosphere can hold more WV: more extreme precipitation and positive feedback in radiative forcing

 \ldots and MSI features a band sensitive to moisture at 12 μm relative to 11 $\mu m!$

Physical Background

- water vapour more effiently absorbing at 12 µm: colder signal in the "dirty" band
- split-window difference (swd) correlates with total column water vapour content (TCWV)

¹simulated with RTTOV v12, Saunders, R. et al. 2018, Geosci. Model Dev.

- water vapour more effiently absorbing at 12 µm: colder signal in the "dirty" band
- split-window difference (swd) correlates with total column water vapour content (TCWV)

¹simulated with RTTOV v12, Saunders, R. et al. 2018, Geosci. Model Dev.

Algorithm Description

Three main influence factors (for clear-sky cases!) over land surfaces:

- 1. atmospheric temperature and humidity profile
- 2. surface emissivity
- 3. surface temperature

We use the CAMEL emissivity atlas included in RTTOV to approximate the emissivity. Profiles are taken from numerical weather prediction. Thus, with RTTOV we can create a forward function:

 $F(\mathit{TCWV}, \mathit{T_{skin}})
ightarrow (\mathit{BT_{clean}}, \mathit{BT_{clean}} - \mathit{BT_{dirty}})$

- TCWV scales the full humidity profile
- *T_{Skin}* scales the layer temperature closest to surface pressure

$$q(i_{1}) = q(i_{0}) \cdot \frac{t_{CWV}(i_{1})}{\int_{p_{surf}}^{0} q(i_{0})}$$
(1)

$$t_{bottom}(i_{1}) = t_{skin}(i_{1}) - (t_{skin}(i_{0}) - t_{p_{surf}}(i_{0}))$$
(2)

Short Description:

- forward model: simulates $BT_{clean}, BT_{clean} BT_{dirty}$ from TCW, T_{skin}
- inverse model: optimal estimation¹ (Rodgers 2000) \Rightarrow iterative change of *TCWV* and *T_{skin}*
- prior knowledge/first guess of profiles is based on ERA5 forecasts
- additional info (e.g. wind speed) also from ERA5 forecasts

Algorithm has been applied on **Meteosat Second Generation** - Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI)¹ and

Sentinel 3 - Sea and Land Surface Temperature Radiometer (S3 SLSTR)

 \rightarrow flexible retrieval framework which can be adapted for EarthCARE MSI

¹El Kassar et al. 2021, Atmos.

Less sensitivity to...

- humidity concentrated at the very lowest level
- significant humidity amounts above 500 hPa
- very low surface temperatures
- thick boundary layers with no vertical temperature gradient

... if the sensitivity is much lower, the NWP first guess is not altered!

However, over thin cirrus the algorithm overestimates the water vapour content: good cloud mask necessary!

 \Rightarrow the algorithm is more of an update/sharpening of first guess atmospheric profiles (from 0.25° to 0.5 km !)

Exemplary Results of TIR TCWV

MSG SEVIRI TCWIV: Validation over Germany for 3 Years, mostly land surfaces:

¹El Kassar et al. 2021, Atmos.

¹Gendt et al. 2004, J. Meteorol. Soc. Japan

3 years worth of matchups: slight wet bias

Sentinel 3 SLSTR TCWV at 1km resolution

- TIR TCWV provides more detail on atmsopheric moisture content
- sensitive enough to reveal lee waves over the Meditteranean
- · cloud mask is needed to filter erroneously high values

Sentinel 3 SLSTR TCWV at 1km resolution: zoom in

 \Rightarrow at 1 km resolution small scale TCWV patterns revealed! Cannot wait for MSI's 0.5 km

- TCWV prior to cloud formation \rightarrow aerosols?
- \bullet inflow of low level humidity into clouds \rightarrow change in cloud microphysics?
- surrounding TCWV around dissipating clouds

• ...

Summary and Outlook

Summary/Conclusions

- a TIR TCWV product could well complement the EarthCARE (MSI) products
- a reasonable accuracy and precision can be achieved using the split window alone
- fine details in TCWV fields can be revealed
- low sensitivity to TCWV under specific conditions \rightarrow in this case just use NWP

Outlook

• global validation study of the algorithm S3 SLSTR