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Introduction
 CORSO project: Reducing the uncertainties in the land carbon budget 

• large uncertainties in Gross Primary Productivity (GPP) predictions 
• constraint both water and carbon fluxes=> analyze both soil moisture and vegetation variables

 Assimilate new type of land satellite observations in the Integrated Forecast System (IFS)
• Level-1 active microwave observations

• sensitive to both vegetation structure (Petchiappan et al., 2021) and soil moisture (Wagner et al., 2013)
• more accurate representation of uncertainties compared to retrievals

• Solar Induced Fluorescence (SIF)
• emission of electromagnetic radiation in the red and far-red by ‘chlorophyl a’ molecule under visible light
• directly related to leaf physiological processes (photosynthesis)
• correlation with both GPP and Leaf Area Index (LAI) (Guanter et al., 2014; He et al., 2017 )
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Introduction
 Observation operator

• Predict model-simulated counterpart of the satellite observation using the IFS fields as predictors
• Physically based observation operator: large uncertainties over land, complex and computationally expensive, 
• ML alternative

• Generic architectures can be applied to different types of EO
• Computationally more efficient
• Quickly test the assimilation of new types of observation

 Challenges
• Design simple and robust observation operator for their integration in the IFS at global scale
• Is the information content of the Earth System model fields sufficient to simulate the satellite signal ?
• How to ensure enough sensitivity to the input fields that we want to analyse (LAI, GPP)
• How to represent the uncertainties in the predictors and the output?
• Importance of localization : use latitude and longitude in the predictors ?
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Methodology to design the ML-based observation operator

 Training database: 
• collocated observation and model fields in the observation space
• quality control and filtering (snow, frozen soil, orographic surface…)

 Feature selection 
• process-based knowledge 
• XAI methods (e.g. SHAP)

 ML model: 
• Gradient boosted trees (XGBOOST, Chen et al., 2016) (XGB)
• Feedforward neural network (NN)

 Training and hyperparameter tuning (training and validation set)
 Evaluation on test set (temporal profile, spatial distribution, gradient )
 Implementation and test in IFS – data assimilation experiments
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ASCAT observation operator: Training database
Training database (Aires, et al., QJRS 2021)
• target: ASCAT backscatter normalized at 40°
• model fields (features) from ERA-5: Leaf Area Index (LAI), soil moisture (SM) (3 layers), soil temperature (ST) 

(3 layers)
• localization : Latitude, longitude (sin/cos transform)
• period: 2016-2018 (training and validation), 2019 (testing)
• resolution: 0.25° grid.

Latitude transect
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ASCAT observation operator: Information content and explainability analysis
SHAP values
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Contrasted correlation with backscatter:
- SM, LAI: positively correlated
- ST: negatively correlated

Vegetation (LAI) and surface 
soil moisture (SM1) are the
most influent variables
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ASCAT observation operator: Performance evaluation

NN model:
3 years training, 
4 hidden layers, 
60 neurons, 
global scale
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Test: R2=0.93; RMSE=0.87;MAE=0.78;SD=0.87

Predicted backscatter, summer 2019

Observed backscatter, summer 2019

Good training and
generalization 
performances
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SIF observation operator: Training database

 Data
• Predictors: fields from ECLand land model offline simulations ( IFS Cyc49r1) 
• Target: SIF at 740nm satellite observations from TROPOMI/Sentinel-5p,  Troposif dataset (Guanter  et a., ESSD 

2021)
• Resolution: 0.1° grid and at 8-day temporal frequency
• Filters: Large view and solar zenith angles, orography area, snow area, frozen soil
• Training: 2019-2020; Validation:2021; Test:2022



ESA-ECMWF WORKSHOP 2024 - Machine Learning for Earth System Observation and Prediction

SIF observation operator: Feature selection

SIFcanopy =       fesc    x     APAR    x     𝝓𝝓F

Canopy structure (LAI) 
Leaf physiological 
characteristics (GPP)

Regulated by environmental factors: 
soil moisture, solar radiation, 2m temperature 
and humidity

SIF canopy drivers SWDOWN
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MEAN OROG
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features Feature importance (xgboost)

+ Temporal dependency: week of the year (cyclic transform)
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SIF observation operator: ML model comparison

XGBOOST (ntrees=500, optimized hyperparameters)

Training year=2019-2020, test=2022

R2=0.88, RMSE=0.09, MAE=0.25 R2=0.85, RMSE=0.1, MAE=0.26

Feedforward NN (6 layers, 60 neurons, batch size=128, 
lr=0.001)

R2=0.84, RMSE=0.1, MAE=0.27R2=0.87, RMSE=0.09, MAE=0.25
Training Test Training Test 

Equivalent performances between XGBOOST and NN 
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SIF observation operator: Global vs vegetation type ML model
global crop grassland

ENF DNF Shrubland

Little benefit  of training the model
on distinct vegetation types

R2=0.85, RMSE=0.1, MAE=0.26 R2=0.82, RMSE=0.11, MAE=0.28 R2=0.83, RMSE=0.09, MAE=0.25

R2=, RMSE=, MAE= R2=, RMSE=, MAE= R2=0.78, RMSE=0.09, MAE=0.25
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SIF observation operator: Evaluation

map
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SIF observation operator: Evaluation
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Accurate prediction of 
- SIF seasonal evolution
-  SIF patterns in GPP vs LAI spaces.
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Conclusions

 Simple feedforward NN provides accurate enough prediction of backscatter and SIF satellite signals from the ECMWF/IFS 
NWP model fields

  Nex step : test the assimilation in the IFS and evaluate the impact on carbon fluxes, water fluxes and NWP near surface 
variables

 ML-based observation operator allows to quickly test the assimilation of new types of observations, generic framework 
can be applied to other observations (e.g. passive microwave observation)

 Challenges and lesson learned 
• Important to evaluate the sensitivity of the input fields that will be analyzed
• Representation of uncertainties in both input features and satellite target
• Risk of overfitting due to the use of latitude and longitude
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SIF observation operator: Impact of target variable

SIF signal is more moisy than NVIRp
=> Reduced prediction performances 

Target= SIF Target= NIRVp (product of the near 
infrared reflectance of vegetation (NIRV) 
over the NIR region and incoming PAR

R2=0.85, RMSE=%, MAE=% R2=0.86, RMSE=%, MAE=%
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