

Kezia Lange, A. Richter, A. Schönhardt, A.C. Meier, J.P. Burrows, and the S5P-VAL-DE-Ruhr campaign team klange@iup.physik.uni-bremen.de

Comparison of TROPOMI tropospheric NO₂ observations with airborne, stationary ground-based and car DOAS measurements during the S5Pval-DE-Ruhr campaign

Sentinel-5P 5 years anniversary meeting 11 October 2022 Taormina, Italy

Kezia Lange¹, Andreas Richter¹, Anja Schönhardt¹, Andreas C. Meier¹, John P. Burrows¹, and the S5P-VAL-DE-Ruhr campaign team:

Michel Van Roozendael², Thomas Wagner³, Thomas Ruhtz⁴, Dirk Schüttemeyer⁹, Nader Abuhassan⁸, Lisa Behrens¹, Birger Bohn², Christian Borger³, Tim Bösch¹, Daniel Santana Diaz⁷, Ermioni Dimitropoulou², Sebastian Donner³, Steffen Dörner³, Henk Eskes⁵, Caroline Fayt², Martina M. Friedrich², Kai Krause¹, Vinod Kumar³, Bianca Lauster³, Alexis Merlaud², Maria Razi³, André Seyler¹, Frederik Tack², Katharina Uhlmannsiek³, Folkard Wittrock¹

(1) IUP Bremen, (2) BIRA, (3) MPIC, (4) FU Berlin, (5) KNMI, (6) FZ-Jülich, (7) LuftBlick, (8) JCET UMBC, (9) ESA

Comparison of TROPOMI NO₂ observations with the S5P-VAL-DE-Ruhr campaign dataset

Kezia Lange, A. Richter, A. Schönhardt, A.C. Meier, J.P. Burrows, and the S5P-VAL-DE-Ruhr campaign team klange@iup.physik.uni-bremen.de

S5P-VAL-DE-Ruhr campaign

- \rightarrow Validation of TROPOMI tropospheric NO₂ VCD
- \rightarrow Campaign activities took place in North Rhine-Westphalia
 - Rhine-Ruhr Metropolitan area
 - 10 million inhabitants
 - Several highways
 - Energy intensive industrial areas
 - Large power plants
- \rightarrow NO_2 pollution hotspot clearly visible in TROPOMI NO_2 maps
- → Airborne imaging, ground-based stationary and mobile car DOAS measurements
- \rightarrow Seven research flight days from 12 18 September 2020
- \rightarrow Part of the QA4EO project

TROPOMI tropospheric NO₂ VCD PAL V02.03.01 September 2020

Comparison of TROPOMI NO₂ observations with the S5P-VAL-DE-Ruhr campaign dataset

Kezia Lange, A. Richter, A. Schönhardt, A.C. Meier, J.P. Burrows, and the S5P-VAL-DE-Ruhr campaign team klange@iup.physik.uni-bremen.de

Instruments

 \rightarrow Mobile component

- IUP-AirMAP imaging DOAS onboard of the Cessna
- 3 car DOAS instruments: MPIC, BIRA, and IUP-Bremen

\rightarrow Ground-based component

- 6 ground-based spectrometers at 5 locations
 - 2 zenith-sky Avantes: Jülich and Gelsenkirchen
 - 2 MAX-DOAS: Duisburg and Airport Dinslaken
 - 2 Pandora: Jülich and Cologne

Kezia Lange, A. Richter, A. Schönhardt, A.C. Meier, J.P. Burrows, and the S5P-VAL-DE-Ruhr campaign team klange@iup.physik.uni-bremen.de

Research flight areas

- \rightarrow Three research flight areas
- \rightarrow Flight area **Jülich**
 - Three large coal fired power plants
- \rightarrow Flight area Cologne
 - Mixed urban and industrial area
- \rightarrow Flight area **Duisburg**
 - Mixture of urban and industrial emitters, includes the central metropolitan Ruhr area
- \rightarrow Each flight 13-15 flight tracks in an area of 30 km x 35 km
- \rightarrow Overpass of ground-based measurement sites

Rheinba

Comparison of TROPOMI NO₂ observations with the S5P-VAL-DE-Ruhr campaign dataset Kezia Lange, A. Richter, A. Schönhardt, A.C. Meier, J.P. Burrows, and the S5P-VAL-DE-Ruhr campaign team klange@iup.physik.uni-bremen.de

5

AirMAP NO₂ maps

Comparison of TROPOMI NO₂ observations with the S5P-VAL-DE-Ruhr campaign dataset

Kezia Lange, A. Richter, A. Schönhardt, A.C. Meier, J.P. Burrows, and the S5P-VAL-DE-Ruhr campaign team klange@iup.physik.uni-bremen.de

Evaluating AirMAP NO₂ VCD with stationary data

- \rightarrow AirMAP data averaged over a **500 m x 500 m** box around the station sites
- → Stationary ground-based data averaged over a time interval of 20 min closest to the AirMAP overpass
- ightarrow 23 coincident measurements
- → AirMAP and ground-based tropospheric NO₂ VCDs are highly correlated and show good agreement

Kezia Lange, A. Richter, A. Schönhardt, A.C. Meier, J.P. Burrows, and the S5P-VAL-DE-Ruhr campaign team klange@iup.physik.uni-bremen.de

Evaluating AirMAP NO₂ VCD with car DOAS data

\rightarrow Advantages of car DOAS:

- → AirMAP and car DOAS measurements are averaged over 500 m x 500 m boxes and in time intervals of 15 min
- \rightarrow 574 coincident measurements (car DOAS ± 15 min window from AirMAP overpass)

 \rightarrow Collocated measurements show good agreement

Universität Bremen

Institute of **Environmental Physics** **Comparison of TROPOMI NO₂ observations** with the S5P-VAL-DE-Ruhr campaign dataset

TROPOMI

18 September 2020 Cologne

- 3.5

3.0

2.5

molec

VCD (10¹⁶

NO2

0.5

L 0.0

Kezia Lange, A. Richter, A. Schönhardt, A.C. Meier, J.P. Burrows, and the S5P-VAL-DE-Ruhr campaign team klange@iup.physik.uni-bremen.de

Evaluating TROPOMI NO₂ VCD with AirMAP data

- \rightarrow 6 measurement days with TROPOMI and AirMAP observations
- \rightarrow Nearly cloud free days
- \rightarrow Collocation criteria:
 - TROPOMI pixel mapped >75%
 - ± 30 min time difference
- \rightarrow 117 TROPOMI pixels coinciding with AirMAP measurements
- \rightarrow AirMAP tropospheric NO₂ VCDs are scaled to the TROPOMI pixel

Kezia Lange, A. Richter, A. Schönhardt, A.C. Meier, J.P. Burrows, and the S5P-VAL-DE-Ruhr campaign team klange@iup.physik.uni-bremen.de

Evaluating TROPOMI NO₂ VCD with AirMAP data

 \rightarrow OFFL V01.03.02: good correlation 0.86 with slope of 0.38

 \rightarrow OFFL V01.03.02 CAMS: correlations unchanged, slope slightly improved to 0.41

 \rightarrow PAL V02.03.01: Larger scatter \rightarrow reduced correlation but better slope of 0.83

Kezia Lange, A. Richter, A. Schönhardt, A.C. Meier, J.P. Burrows, and the S5P-VAL-DE-Ruhr campaign team klange@iup.physik.uni-bremen.de

Evaluating TROPOMI NO₂ VCD – Cloud effects

- \rightarrow Without cloud correction
 - Lower branch gone
 - Upper branch much reduced
 - Better correlation 0.76 \rightarrow 0.85
- \rightarrow Two branches caused by cloud correction

- \rightarrow Cloud pressure filter
 - Detecting pixels with clouds close to the surface
 - cloud pressure surface pressure $\Delta CS < 50$ hPa
 - 28 out of 117 pixel replaced with no cloud correction
 - Lower branch gone \rightarrow better correlation
- \rightarrow High cloud pressures might be caused by aerosol loads

Kezia Lange, A. Richter, A. Schönhardt, A.C. Meier, J.P. Burrows, and the S5P-VAL-DE-Ruhr campaign team klange@iup.physik.uni-bremen.de

Evaluating TROPOMI NO₂ VCD - NO₂ profile

- \rightarrow Custom TROPOMI NO₂ product based on V02.03.01
 - Possibility to change auxiliary data

 \rightarrow Higher resolved a priori NO₂ vertical profile

- 0.1° x 0.1° CAMS regional analyses below 3 km
- Recalculating AMFs and tropospheric NO₂ VCDs
- Correlation nearly unchanged
- − TROPOMI data closer to AirMAP data 0.88 \rightarrow 1.00
- \rightarrow Higher resolved NO_2 profiles have a larger effect than for the old version
 - only for the more realistic lower cloud pressures
 - Lower branch in V02.03.01 remains

Kezia Lange, A. Richter, A. Schönhardt, A.C. Meier, J.P. Burrows, and the S5P-VAL-DE-Ruhr campaign team klange@iup.physik.uni-bremen.de

Evaluating TROPOMI NO₂ VCD - surface reflectivity

- \rightarrow Replacing OMI LER with TROPOMI LER (Tilstra, 2022)
 - Slope increased slightly $1 \rightarrow 1.02$
 - Correlation nearly unchanged 0.75 \rightarrow 0.74
- → Replacing OMI LER with TROPOMI DLER (Tilstra, 2022)
 - Slope decreased 1 \rightarrow 0.95
 - Correlation unchanged

\rightarrow TROPOMI LER/DLER only small effect

Kezia Lange, A. Richter, A. Schönhardt, A.C. Meier, J.P. Burrows, and the S5P-VAL-DE-Ruhr campaign team klange@iup.physik.uni-bremen.de

Conclusions

- \rightarrow Evaluation of different TROPOMI tropospheric NO₂ VCD products
- \rightarrow Old version OFFL V01.03.02:
 - Strong negative bias but good correlation
 - Replacing TM5 with CAMS regional NO₂ profiles only small impact
- \rightarrow New version PAL V02.03.01:
 - Slope increased but correlation got worse
- \rightarrow Sensitivity test showed that problems are caused by cloud correction
 - Aerosol loads
- \rightarrow CAMS regional $\rm NO_2$ profiles larger impact than for old version
- \rightarrow TROPOMI LER/DLER plays a minor role for the campaign dataset

Environmental Physics

Kezia Lange, A. Richter, A. Schönhardt, A.C. Meier, J.P. Burrows, and the S5P-VAL-DE-Ruhr campaign team klange@iup.physik.uni-bremen.de

Thank you for your attention!

