3rd MedCyclone Workshop

Frascati [Rome], Italy, 15 July 2024

Sensitivity study to physical parameterisations and resolution of the Mediterranean derecho of 18 August 2022

Didier Ricard, Clément Strauss, Marc Mandement, Christine Lac, Benoît Vié, Clotilde Augros

CNRM (Météo-France/CNRS), Toulouse, France

Introduction: derecho definition

Markowski et Richardson (2013), from Fujita (1978)

bow echo: zone of downbursts in front of the maximum curvature of the line (DB).

A second zone at the northern end (in the northern hemisphere) of the storm system when the curved line takes on a comma shape.

derecho: convective system producing violent winds over a long distance with the following properties (Johns and Hirt 1987) :

- at least three gusts greater than 33 m s⁻¹ or corresponding F1 damage, separated by 64 km or more
- bands of gusts greater than 26 m s⁻¹ or an area of corresponding damage more than 400 km long and more than 100 km wide

CNTS

Chronology: convective activity near the Balearic Islands during the night

Chronology: organisation in a convective line with a rapid eastward propagation, then it takes an arched shape \rightarrow bow echo

CNTS

Chronology: winding of the line around a minimum pressure and continuing its route towards Italy

CNTS

Chronology: winding of the line around a minimum pressure and continuing its route towards Italy and Eastern Europe

Impact: intense electrical activity over a long distance (>1400 km), very strong gusts (> 60 ms⁻¹) causing extensive damage and many deaths (12) and injuries (>100)

Introduction

Aims:

- → Comparison AROME and Meso-NH
- → test and evaluate the contribution of new parameterisation and resolution options with the Meso-NH research model

Meso-NH runs

- Configuration
 - domain 1080 pts x 750 pts
 - resolution: 1 km
 - vertical grid as AROME
 - initiation: AROME 00 UTC analysis
 - coupling: AROME forecasts
 - duration: 00-12 UTC
- Simulation MNH REF 1KM
 - turbulence : 1D, BL89
 - microphysics : ICE3
 - Shallow convection: EDKF
 - radiation : ECMWF
 - numerical schemes: Centered 4th order, RKC4
 - dt = 1,5 s -> except for dynamics, configuration as close as possible to AROME 00 UTC

Meso-NH runs

- Configuration
 - domain 1080 pts x 750 pts
 - resolution: 1 km
 - vertical grid as AROME
 - initiation: AROME 00 UTC analysis
 - coupling: AROME forecasts
 - duration: 00-12 UTC
- Simulation MNH REF 1KM
 - turbulence : 1D, BL89
 - microphysics : ICE3
 - Shallow convection: EDKF
 - radiation : ECMWF
 - numerical schemes: Centered 4th order, RKC4
 - dt = 1,5 s -> except for dynamics, configuration as close as possible to AROME 00 UTC

Sensitivity test to turbulence and microphysics ADAPT LIMA

Meso-NH runs

- Configuration
 - domain 1080 pts x 750 pts
 - resolution: 1 km
 - vertical grid as AROME
 - initiation: AROME 00 UTC analysis
 - coupling: AROME forecasts
 - duration: 00-12 UTC
- Simulation MNH REF 1KM
 - turbulence : 1D, BL89
 - microphysics : ICE3
 - Shallow convection: EDKF
 - radiation : ECMWF
 - numerical schemes: Centered 4th order, RKC4
 - dt = 1,5 s -> except for dynamics, configuration as close as possible to AROME 00 UTC
 - Sensitivity test to turbulence and microphysics ADAPT LIMA
 - Impact of horizontal resolution: nested domain at 250 m (1440 pts x 1440 pts)

• development of the first convective cells at sea, near the Balearic Islands, progressing eastwards

• development of the first convective cells at sea, near the Balearic Islands, progressing eastwards

lack of development of supercells and cells off the French coast

• development of the first convective cells at sea, near the Balearic Islands, progressing eastwards

lack of development of supercells and cells off the French coast

• development of the first convective cells at sea, near the Balearic Islands, progressing eastwards

lack of development of supercells and cells off the French coast

- development of the first convective cells at sea, near the Balearic Islands, progressing eastwards
- lack of development of supercells and cells off the French coast
- convective line structure, more extensive in Meso-NH than in AROME

- development of the first convective cells at sea, near the Balearic Islands, progressing eastwards
- lack of development of supercells and cells off the French coast
- convective line structure, more extensive in Meso-NH than in AROME
- delay in simulations (> 1h, 80 km), line curves in observations

- development of the first convective cells at sea, near the Balearic Islands, progressing eastwards
- lack of development of supercells and cells off the French coast
- convective line structure, more extensive in Meso-NH than in AROME
- delay in simulations (> 1h, 80 km), line curves in observations
- system over Corsica, bow echo in simulations over the sea: delay of 1h30 for AROME, 1h15 for MNH

- development of the first convective cells at sea, near the Balearic Islands, progressing eastwards
- lack of development of supercells and cells off the French coast
- convective line structure, more extensive in Meso-NH than in AROME
- delay in simulations (> 1h, 80 km), line curves in observations
- system over Corsica, bow echo in simulations over the sea: delay of 1h30 for AROME, 1h15 for MNH

- development of the first convective cells at sea, near the Balearic Islands, progressing eastwards
- lack of development of supercells and cells off the French coast
- convective line structure, more extensive in Meso-NH than in AROME
- delay in simulations (> 1h, 80 km), line curves in observations
- system over Corsica, bow echo in simulations over the sea: delay of 1h30 for AROME, 1h15 for MNH

- development of the first convective cells at sea, near the Balearic Islands, progressing eastwards
- lack of development of supercells and cells off the French coast
- convective line structure, more extensive in Meso-NH than in AROME
- delay in simulations (> 1h, 80 km), line curves in observations
- system over Corsica, bow echo in simulations over the sea: delay of 1h30 for AROME, 1h15 for MNH

- development of the first convective cells at sea, near the Balearic Islands, progressing eastwards
- lack of development of supercells and cells off the French coast
- convective line structure, more extensive in Meso-NH than in AROME
- delay in simulations (> 1h, 80 km), line curves in observations
- system over Corsica, bow echo in simulations over the sea: delay of 1h30 for AROME, 1h15 for MNH
- intense convective activity at sea between Corsica and the mainland in the simulations, while the instability has is already been consumed by the supercell in the observations

- Value of fine-scale observations: strong pressure gradients, difference > 12 hPa
- Pressure tripole more marked in Meso-NH with a slightly more realistic gradient over Corsica
- Strong pressure minimum associated with the development of the northern cyclonic vortex → winding of the convective line

Comparison wind gusts Observations - AROME - Meso-NH

- Strong gusts associated with strong pressure gradients along the bow echo, its mesoscale eddies and the bookend cyclonic vortex to the north
- Extended area of strong gusts in Meso-NH with finer-scale structures

Vertical structure Meso-NH 1km

Vertical structure Meso-NH 1km

Mixing ratio of water vapor

0730 UTC Virtual potential temperature

- dry intrusion at the back of the system
- evaporation of part of the precipitation
- cold pool under the convective line (more than 2000m thick)
- gust front ahead of the cold pool

¢

METEO

FRANCE

Impact of mixing length Meso-NH 1km

- Smaller mixing length with ADAPT (taking into account vertical wind shear and mesh size):
 - less intense bookend vortex
 - mesohigh a little stronger but a little more delay in the progression of the line

Impact of mixing length Meso-NH 1km

Impact of microphysics: ICE3 versus LIMA

REF1KM ICE3 1 moment scheme

LIMA (Vié et al, 2016) 2 moment scheme (rain, ice, cloud water, graupel, snow)

→ Similar convective structures and chronology but more extended in LIMA with more intense reflectivity

Impact of horizontal resolution: 250m versus 1km

Impact of horizontal resolution: Observation - 1km – 250m ICE3

- 250m ICE3
- line comprising more pronounced convective cells
- more extensive line, bookend vortex a little further north, slightly more intense reflectivity, more eddy structures (mesovortices)

METEO FRANCE

Impact of horizontal resolution: Observation - 1km – 250m LIMA

- 250m LIMA
- line comprising more pronounced convective cells
- more extensive line, bookend vortex a little further north, more intense reflectivity, more eddy structures (mesovortices)

METEO FRANCE

Impact of horizontal resolution: 1km versus 250m

time

time

Impact of horizontal resolution: 1km – 250m

Wind gusts: maxima values between 06 and 09 UTC

- Finer and more intense wind structures over a larger area in Corsica for the 250m resolution runs
- Larger area of strong wind associated with the bookend vortex in LI250m

Impact of horizontal resolution: 1km – 250m

Vorticity: maxima values between 06 and 09 UTC

- Finer and more intense wind structures over a larger area in Corsica for the 250m resolution runs
- Larger area of strong wind associated with the bookend vortex in LI250m
- Strong winds associated with mesovortices, many discernible vortex trajectories

Impact of horizontal resolution: 1km – 250m

Vorticity: maxima values between 06 and 09 UTC

- Finer and more intense wind structures over a larger area in Corsica for the 250m resolution runs
- Larger area of strong wind associated with the bookend vortex in LI250m
- Strong winds associated with mesovortices, many discernible vortex trajectories

Zoom on a mesovortice: Ll250m

- Updraft (red) along the leading edge of the line, ahead of the cold pool, downdraft (white) ٠
- Strong wind associated with the rear inflow jet ٠

acceleration to the south of the eddies: contribution of the vortices to the generation of strong winds •

Conclusion – Perspectives

- Realistic simulations of the Corsican derecho (with good initial conditions from AROME 00UTC)
 - rapid displacement of the convective line
 - accentuation of the northern vortex, transition to a bow echo and winding
 - but with a delay and lack of the supercell to the north
 - gusts associated with dynamic (eddies) and thermodynamic aspects (cold pool under system)
- More intense line and better chronology with Meso-NH compared with the more diffusive AROME (effective resolution)
 - possible contribution from AROME 500 m
- Meso-NH incubator for new parameterisations
 - impact of turbulence on wind and gust intensity
 - impact of microphysics on reflectivity intensity and convective system extension
 - strong impact of resolution on line extension and gust intensity
- Perpectives
 - assessments to look more closely at the dynamic and thermodynamic aspects
 - tests on other physical parameterisations: marine surface schemes (ECUME, WASP,)
 - need of work on predictability issues

Thanks for your attention

¢

METEO

Impact of horizontal resolution

METEO FRANCE

- Strong gusts associated with strong pressure gradients along the bow echo, its mesovortices and the northern bookend vortex
- Larger area of strong gusts in Meso-NH

