Advances in research of equatorial plasma depletions enabled by the Swarm missions

C. Stolle1, J. Rodríguez-Zuluaga2, C. Xiong3, T.A. Siddiqui1, S. K. Das1, L. Schreiter4,5, J. Park6, H. Lühr5, Y. Yamazaki1, X. Wan7, I. Rusch1, G. Kervalishvili5, J. Rauberg5

1Leibniz Institute of Atmospheric Physics (IAP) at the University of Rostock
2Johns Hopkins University Applied Physics Laboratory
3Department of Space Physics, Electronic Information School, Wuhan University
4Institute of Geodesy, Technical University of Berlin
5Geomagnetism, GFZ Potsdam
6Korea Astronomy and Space Science Institute
7Planetary Environmental and Astrobiological Research Laboratory, Sun Yat-sen University
Equatorial plasma irregularities

- Major event ("convective storm") in space physics
 - Magnetic field/ionosphere/atmosphere interaction
 - During geomagnetic quiet and disturbed times
 - Initiation and growth processes under research

Hysell, JASTP, 2000
Equatorial plasma irregularities

• Major event ("convective storm") in space physics
 o Magnetic field/ionosphere/atmosphere interaction
 o During geomagnetic quiet and disturbed times
 o Initiation and growth processes under research

• Affecting radio wave propagation
 o Disturbance / Loss of GNSS signals
Equatorial plasma irregularities

- Major event ("convective storm") in space physics
 - Magnetic field/ionosphere/atmosphere interaction
 - During geomagnetic quiet and disturbed times
 - Initiation and growth processes under research
- Affecting radio wave propagation
 - Disturbance / Loss of GNSS signals
- Systematic signatures in the magnetic field

Number of detections of irregularities in the magnetic field (IBI)
Swarm observations of plasma irregularities

- In situ data – at about 450 km
- Multi parameter, high-precision
Swarm observations of plasma irregularities

- In situ data – at about 450 km
- Multi parameter, high-precision
- Complements remote sensing methods

Rodríguez–Zuluaga et al., ESS, 2021
Swarm observations of plasma irregularities

- In situ data – at about 450 km
- Multi parameter, high-precision
- Complements remote sensing methods
- stable and long-term (> 10 years)

Rodríguez–Zuluaga et al., ESS, 2021
Determining the location of the dynamo source

Field-aligned Poynting flux (S_\parallel)

- F-region winds act as the dynamo source
- E-region conductivity acts as the load
- Well centred within a symmetric ionosphere
Determining the location of the dynamo source

Field-aligned Poynting flux (S_\parallel)

- **Observations**: Swarm mainly observes uni-directional Poynting flux
Determining the location of the dynamo source

- **Observations**: Swarm mainly observes uni-directional Poynting flux
- **IGRF/IRI/MSIS**: Depending on season, conductivity is not symmetric (meridional winds expected to be the cause)
 - The dynamo source may be off-equator
Determining the location of the dynamo source

Field-aligned Poynting flux (S_\parallel)

- **Observations**: Swarm mainly observes uni-directional Poynting flux
- **IGRF/IRI/MSIS**: Depending on season, conductivity is not symmetric (meridional winds expected to be the cause)
 - The dynamo source may be off-equator
- **Cornell physical model**: meridional winds determine the “separatrix”
Co-located observations of plasma depletion and GPS observables

Occurrence rate of loss of GPS signal

Plasma irregularities (total count of positive IBI index)

Xiong et al., Space Weather, 2016; AnGeo, 2018.
Co-located observations of plasma depletion and GPS observables

GPS loss occurrence for depletions > 10×10^{11} m$^{-3}$
(For steep plasma density gradients)

GPS loss occurrence for depletions < 10×10^{11} m$^{-3}$
(For shallow plasma density gradients)

Xiong et al., Space Weather, 2016; AnGeo, 2018.
Statistical model of occurrence of irregularities

- Based on 9 years of CHAMP and 9 years of Swarm magnetic data (IBI)
- Estimate of probability (0-1) for a given local time, longitude, day of year and F10.7 solar flux
- https://igit.iap-kborn.de/ibp/ibp-mode
A forecast for a binary event by a probabilistic model is better the larger the area, A, under the ROC curve is:

$$ GC = 2A - 1 $$

Good: $GC = 1$

Bad: $GC = 0$

- GC (all ΔNe) = 0.43
- GC ($\Delta Ne < 2 \times 10^5 \text{cm}^{-3}$) = 0.10
- GC ($\Delta Ne > 2 \times 10^5 \text{cm}^{-3}$) = 0.76
Post-midnight irregularities

Zakharenkova et al., *Space Weather*, 2023; COSMIC-2, year 2021, F10.7 = 75 sfu, ΔNe > 0.6\cdot105cm$^{-3}$

Wan et al., *JGR*, 2018; Swarm A, 2013-2017, Kp < 3, ΔNe > 0.5\cdot105cm$^{-3}$

- The statistical model is sensitive to depletions of ΔNe > 2\cdot105cm$^{-3}$
 - Relates to magnetic signatures and GNSS scintillations!

Pre-midnight

Swarm/CHAMP statistical model (IBI)

F10.7 = 80 sfu

Post-midnight

0.2 nT
Post-midnight irregularities

Zakharenkova et al., *Space Weather*, 2023; COSMIC-2, year 2021, F10.7 = 75 sfu, $\Delta N_e > 0.6 \times 10^5 \text{cm}^{-3}$

Wan et al., *JGR*, 2018; Swarm A, 2013-2017, Kp < 3, $\Delta N_e > 0.5 \times 10^5 \text{cm}^{-3}$

- The statistical model is sensitive to depletions of $\Delta N_e > 2 \times 10^5 \text{cm}^{-3}$

 ➢ Relates to magnetic signatures and GNSS scintillations!
Colours: Ground-based scintillation S4 at Caribbeans
Contours: 25% probability predicted by model
2018 – 2024

KNMI (Courtesy: Eelco Doornbos)
Summary

- The Swarm mission **convinces** with its multi-parameter suite of high-precision instruments, its constellation and long time operation!

- The mission has lead to **characterising** equatorial plasma depletions and their effects in **multiple** disciplines.
Summary

- The Swarm mission convinces with its multi-parameter suite of high-precision instruments, its constellation and long time operation!

- The mission has lead to characterising equatorial plasma depletions and their effects in multiple disciplines

Remaining targets:

- Explore seeding mechanisms of plasma irregularities in combination with low-inclination orbit satellites and remote sensing data, such as, the role of upward propagating atmospheric gravity waves
The Swarm mission convinces with its multi-parameter suite of high-precision instruments, its constellation and long time operation!

The mission has lead to characterising equatorial plasma depletions and their effects in multiple disciplines

Remaining targets:

- Explore seeding mechanisms of plasma irregularities in combination with low-inclination orbit satellites and remote sensing data, such as, the role of upward propagating atmospheric gravity waves

- Forecasting ionospheric scintillation related to these depletions on GNSS or radar applications at ground and space.