Artificial Intelligence and Data Science in Earth Observation

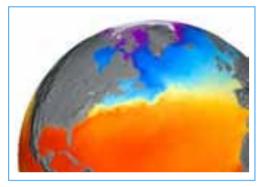
sen für Morgen

Xiaoxiang Zhu

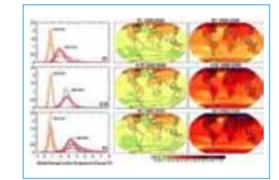
Remote Sensing Technology Institute (IMF), DLR Signal Processing in Earth Observation (SiPEO), TUM

DLR's Mission in Earth Observation

We research and develop solutions for major challenges in the following areas ...



Earth System Research and Environmental Sciences



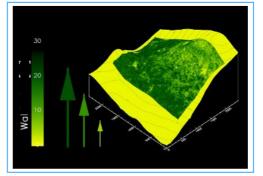
Global Change Research

Meteorology

Sustainable Development

Security

Mobility



Resource Management

City Planning

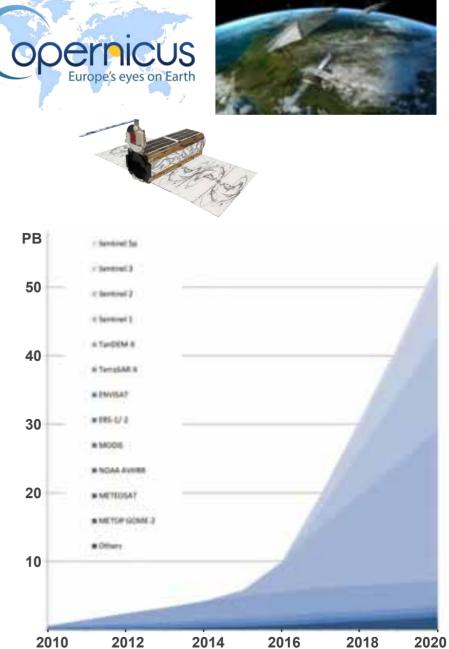
The Golden Era of Big Earth Observation Data

- Sentinels and future national satellites provide
 - continuous, reliable and quality controlled acquisition of big EO data
 - free and open data
 - long-term perspective
- Complementary NewSpace approaches, e.g. Planet
- Internet giants and Start-Ups (Descartes Lab, Orbital Insight,...) enter EO

Classical evaluation methods no longer sufficient \rightarrow AI4EO

But:

High EO quality requirements and wide application diversity call for EO-specific AI research and innovative AI4EO methods



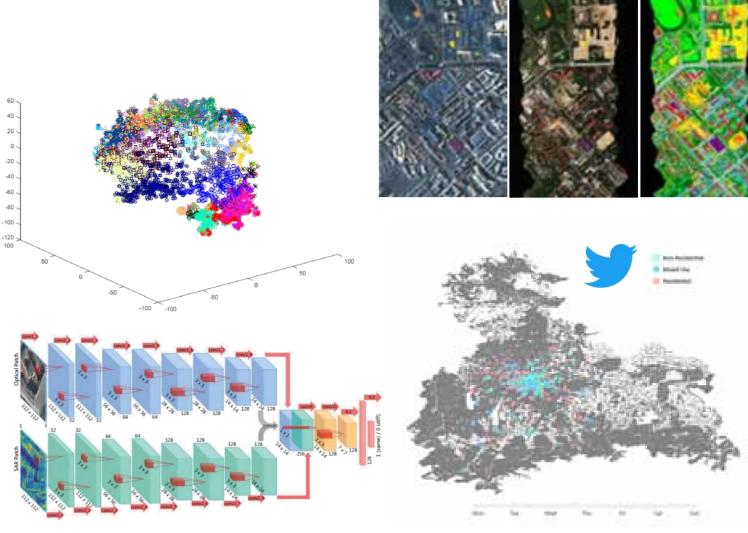
Data Science and AI in Earth Observation

Date Fusion

Data Mining

Machine Learning/Deep Learning

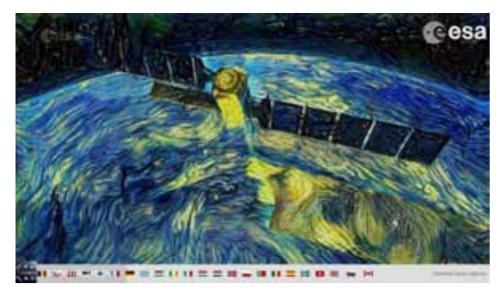
Big Data Management and HPC



Tile Roof Tar Roof Concrete Roof Bare Soil Road Shadow

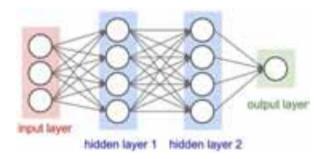
AI4EO

Deep Learning in Remote Sensing

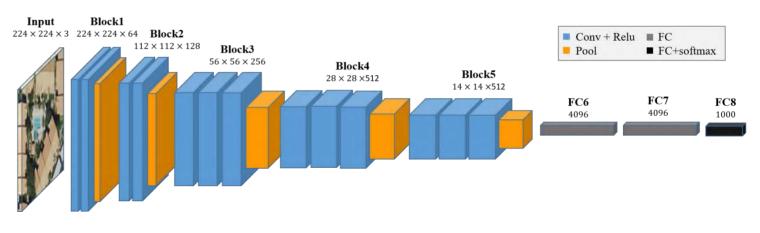


Geoscientific applications Global Urban Mapping

Machine Learning/Deep Learning



Classical Neural Net mid 1980s



Deep Neural Net since 2006/2012

IEEE Geoscience and Remote Sensing Magazine, Dec. 2017

Deep Learning in EO – Hot Topic or Hype?

- Phase 1: Quick wins and quick papers

"we can also do it with DL" "e.g. $86.7 \% \rightarrow 89.3 \%$ "

– Phase 2: Understand that EO is different from internet image labelling

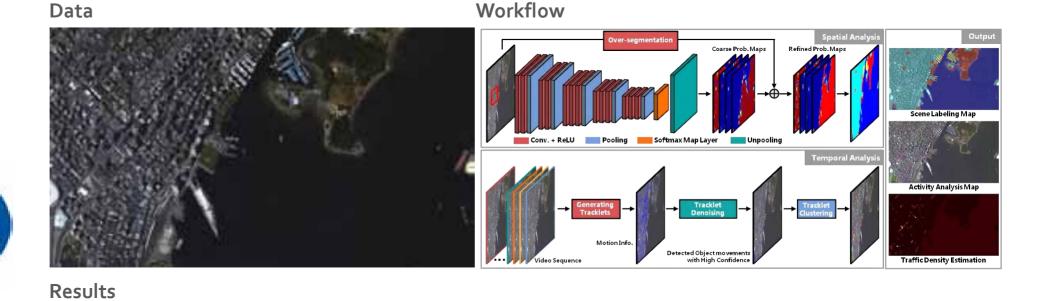
- Design new architectures for specific problems, and train from scratch

– Phase 3: Remember your EO expert knowledge and find how to integrate it into DL

- "Opening the black box", "turn the black box gray"
- Re-implant physics, Bayes and domain expertise into the learning process

One of Our Phase 1 Successes

Spatiotemporal Scene Interpretation of Space Videos via Deep Neural Network and Tracklet Analysis



Winner of

Data Fusion Contest 2016

"Spatiotemporal Scene Interpretation of Space Videos via Deep Neural Network and Tracklet Analysis", L. Mou, X. Zhu

What makes Deep Learning in Earth Observation Special?

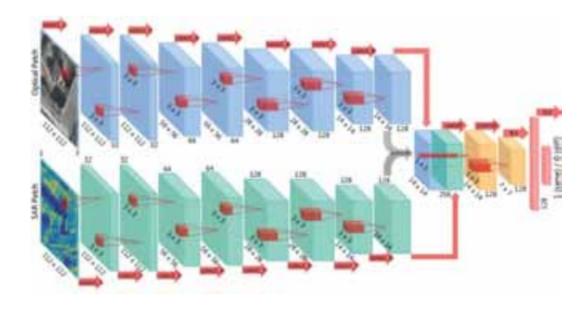
- Classification and detection are only small fractions of EO problems

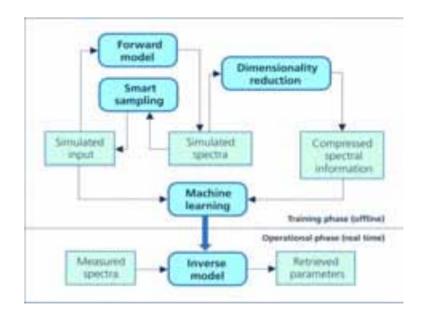
- Focus on retrieval of physical or bio-chemical variables
 High accuracy , traceability and reproducibility of results, Quality measures
- Decadal expert domain knowledge available
- Well-controlled data acquisition (radiometric, geometry, spectrometric, statistical, SNR,...)
- Data can be 5-dimensional (x-y-z-t-λ), complex-valued and multi-modal : SAR, Lidar, multi-/super-/hyperspectral, GIS, OSM, citizen science, social media,...

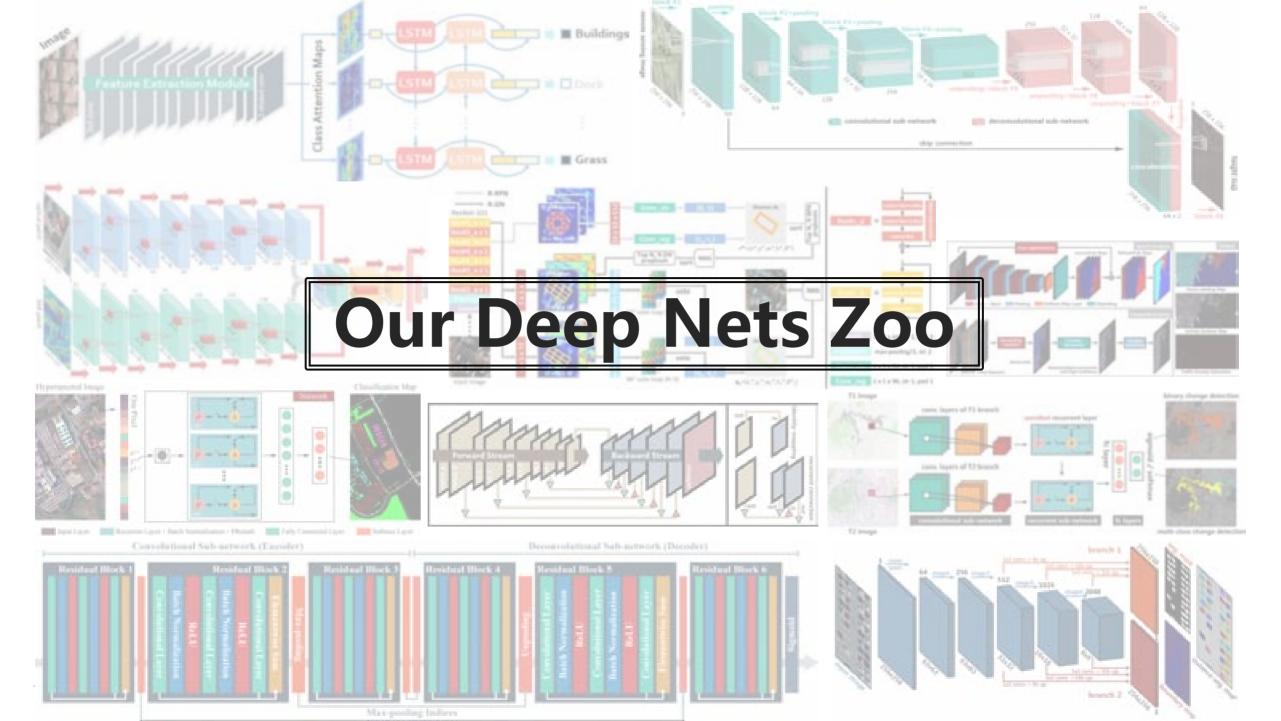
- Often: lack of sufficient training data

Deep Learning@EOC

- Detection, segmentation and classification of buildings, ships, vehicles, persons...
- Classification of Land Use/Land Cover, Settlement Types and LCZs
- Change Detection and Time Series Analysis
- SAR/Optical Matching
- 2D/3D optical/SAR/PolSAR/LiDAR fusion
- Synthesizing optical images from SAR data and vice versa
- Sentinel-2 cloud removal
- IM2Height and IM2Building Footprint
- Fusion of EO and social media data (image and text)
- Solving non-linear inverse problems in atmospheric sensing
- Merging multi-decadal satellite data for climate studies

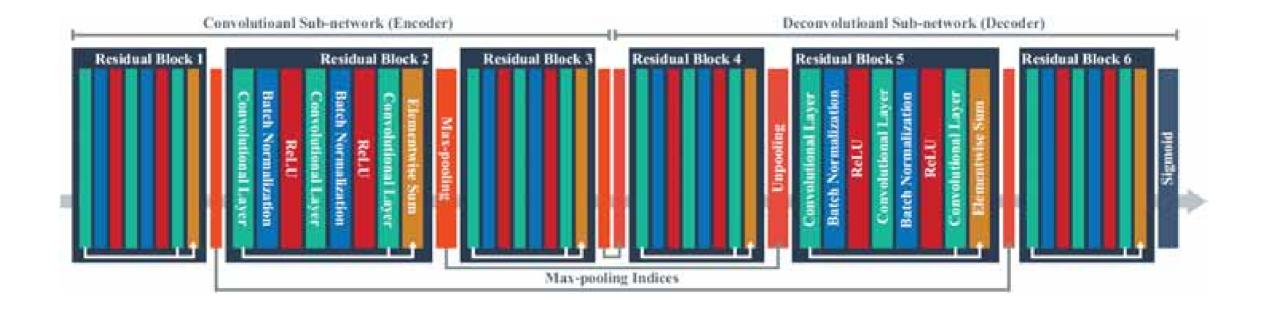






Hyperspectral Image Analysis

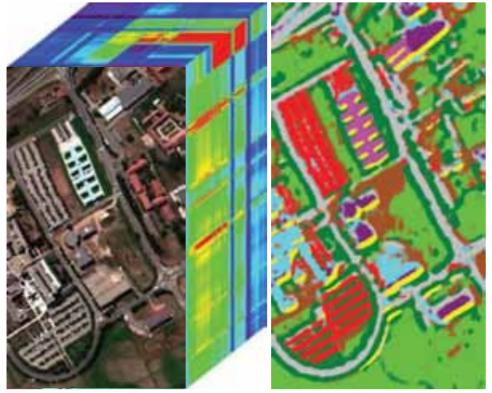
Unsupervised Spectral-Spatial Feature Learning via Deep Residual Conv-Deconv Net



Mou, Ghamisi, and Zhu, IEEE TGRS 56 (1), pp. 391-406, 2018.

Unsupervised Spectral-Spatial Feature Learning via Deep Residual Conv-Deconv Net

Application I: Classification



University of Pavia, Italy

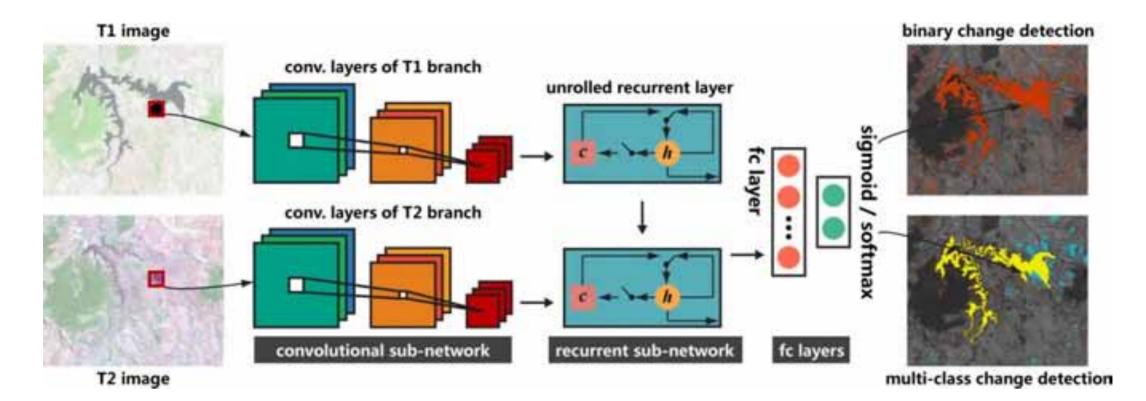
Application II: "Free" Object Localization

•We found some neurons in our network own good description power for semantic visual patterns in the object level. For example, the neurons **#52** and **#03** can be used to precisely capture **metal sheets** (left) and **vegetative covers** (right).

Mou, Ghamisi, and Zhu, IEEE TGRS 56 (1), pp. 391-406, 2018.

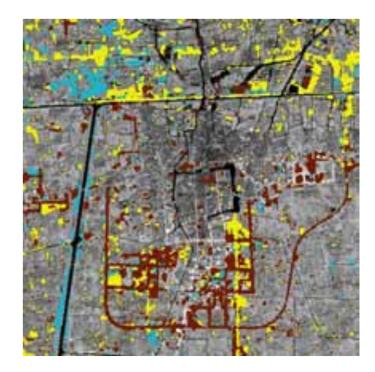
Time Series Data Analysis

Recurrent Convolutional Neural Network for Change Detection



Mou , Bruzzone, Zhu, IEEE TGRS 57 (2), pp. 924-935, 2019

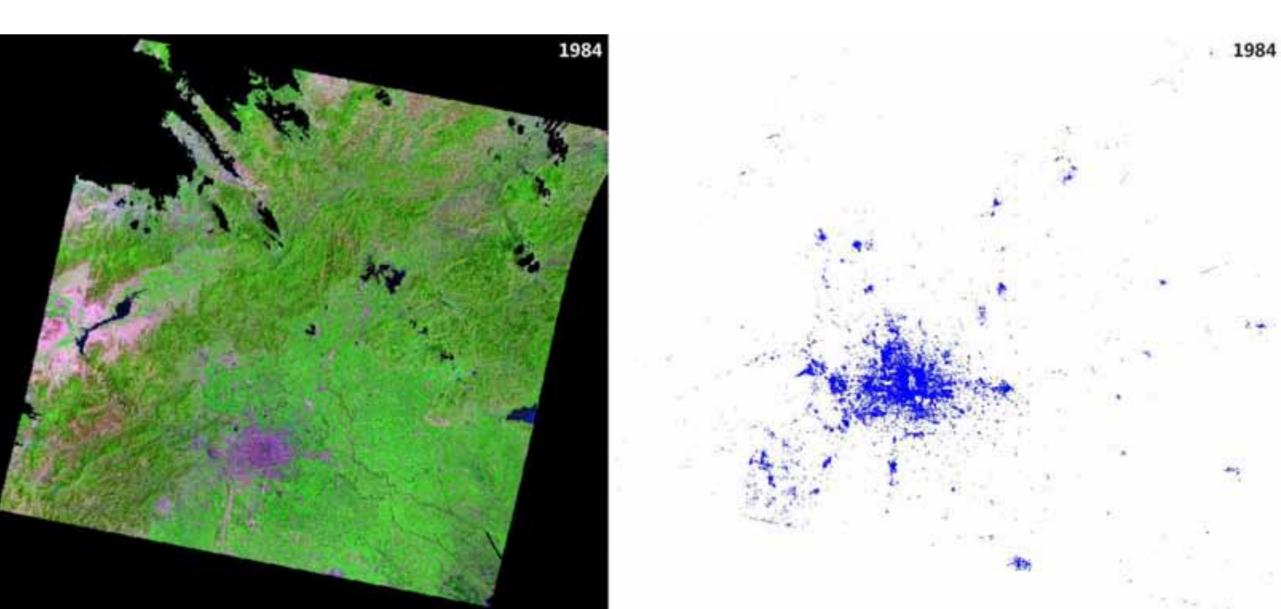
Recurrent Convolutional Neural Network for Change Detection



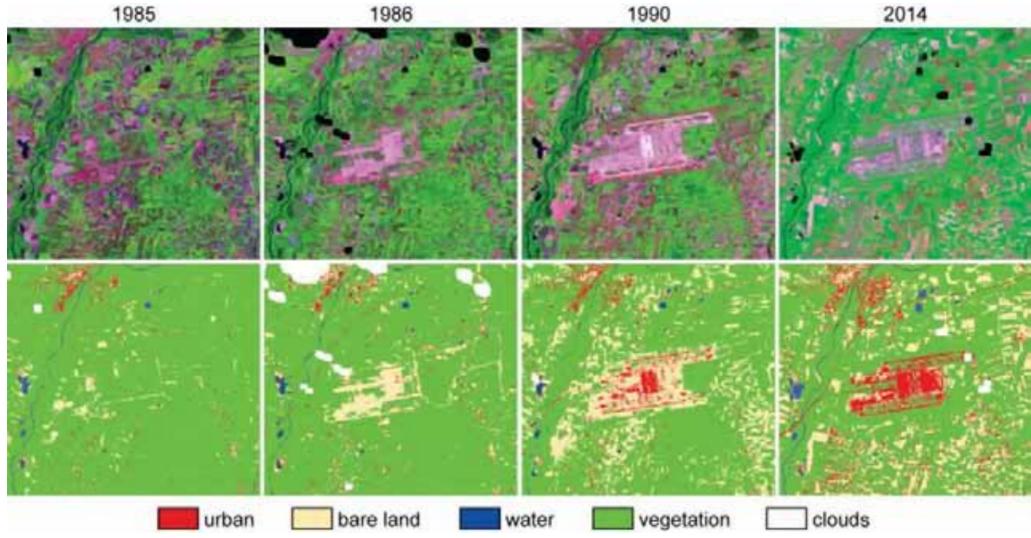
Location: Taizhou City, China Legend: **Changed areas** (in binary change detection); **city expansion**; **soil change**; **water change**

Mou , Bruzzone, Zhu, IEEE TGRS 57 (2), pp. 924-935, 2019

Example – Urban Growth of Beijing (1984 - 2016)



Munich Airport



Global Applications with Sentinels

Global Cloud Cover – 67%

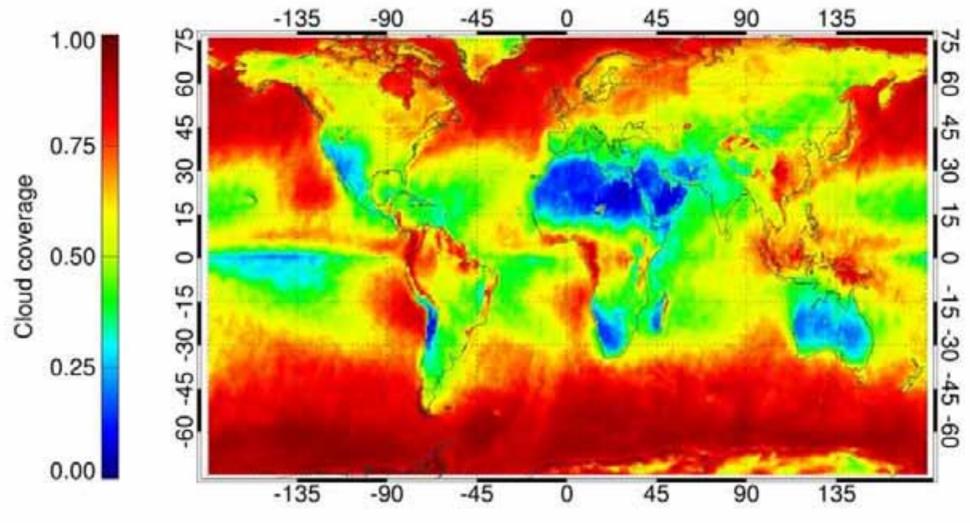
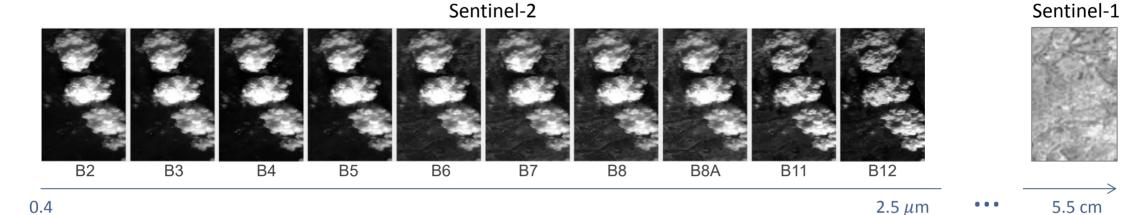


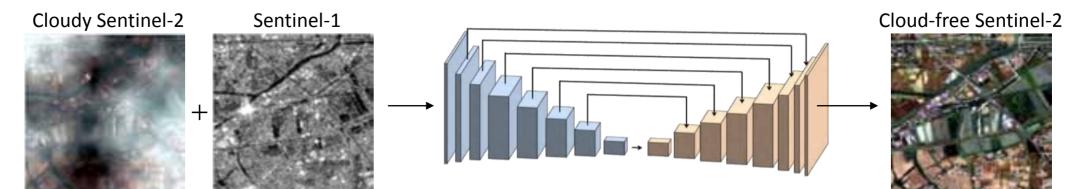
Image: ESA/Cloud-CCI

cGAN for Removing Clouds from Sentinel-2 Data using Cloud-free Radar Data

Motivation: Optical sensors cannot penetrate clouds, but microwaves do.



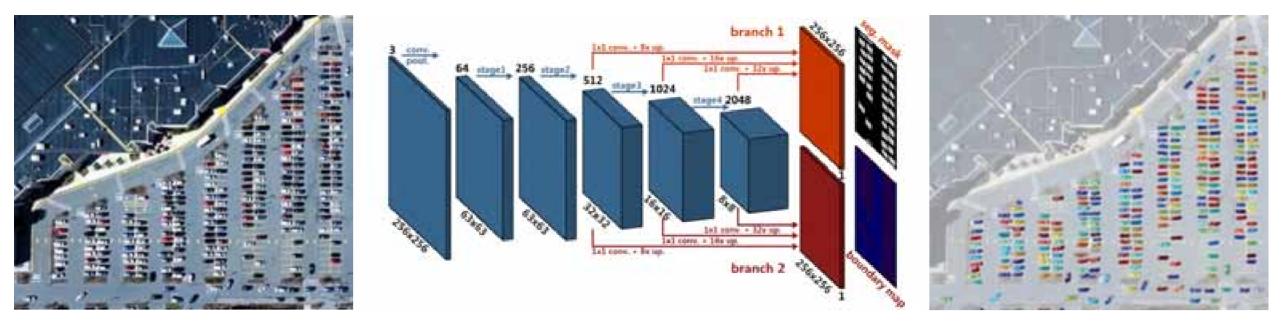
Objective: Train generative adversarial network to produce cloud-free optical imagery



Grohnfeldt, Schmitt, **Zhu** (2018), Proceeding of the ISPRS TC II Symposium 2018, Riva del Garda, Italy.

High Resolution Remote Sensing Imagery Analysis

Multi-task CNNs for Car Instance Segmentation



Mou & Zhu, IEEE TGRS 56(11), pp. 6699-6711, 2018.

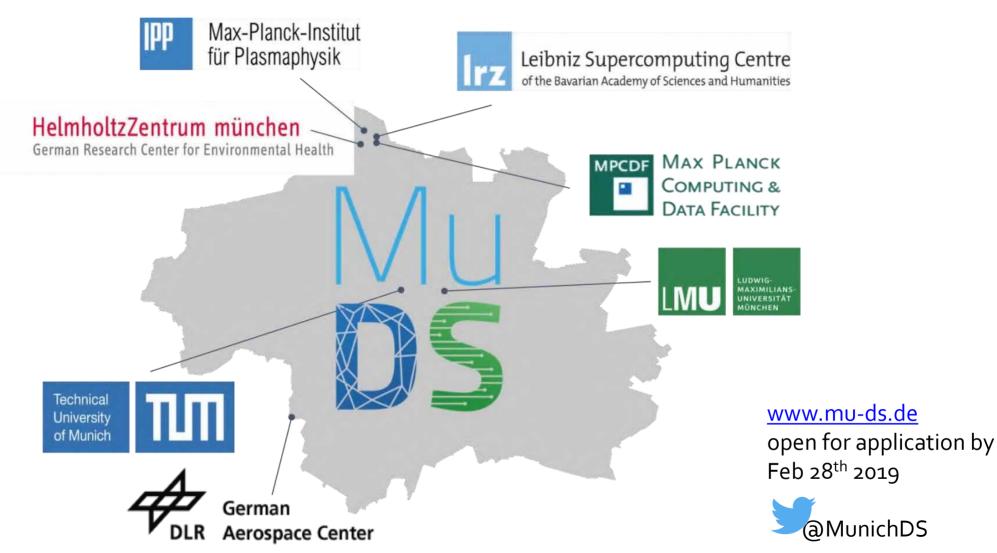
Open Issues

- novel applications, other than classification and detection related tasks
- transferability of deep nets
- automated deep topology learning
- very limited annotated data in remote sensing
- how to **benchmark** the fast growing deep-learning algorithms in remote sensing?
- how to combine physics-based modeling and deep neural network?
- and many more...

Munich School for Data Science @ Helmholtz, TUM & LMU (MuDS)

Speakers: Fabian Theis (HMGU), Frank Jenko (IPP), Xiaoxiang Zhu (DLR)

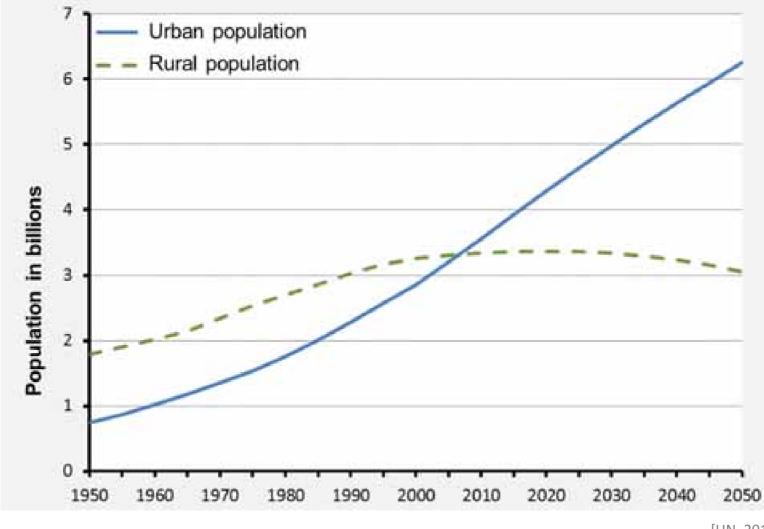
Scale: 12M€, 38 Doctoral candidates



Global Urban Mapping

Sustainable Development Goals Image: Sustainable Development Goa

Urban Planet



[UN, 2014]

Urban Growth Happens Mostly in Developing Areas

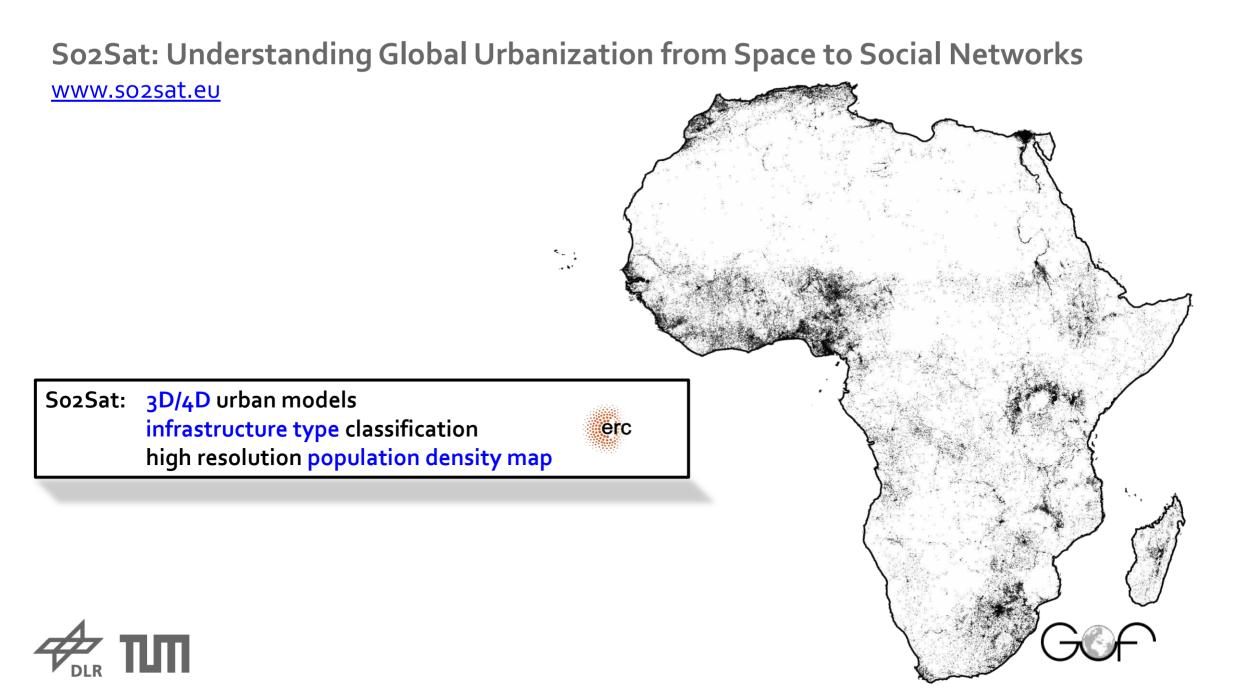
Lagos, 21 Million Population

Data: United Nations World Urbanization Prospects 2014. Minimum city population threshold: 300k. Cartography: D. A. Smith, CASA UCL.

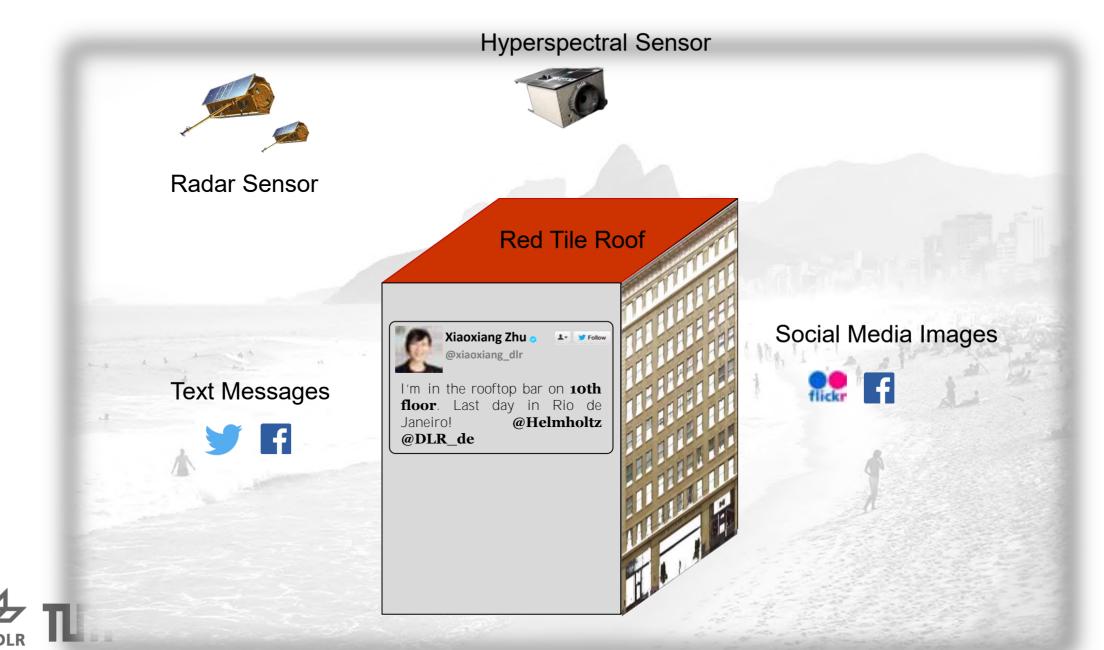
hindustantimes

Faulty wiring behind 69% of 50,000 fires in Mumbai in past decade, data reveals

and the second state of th

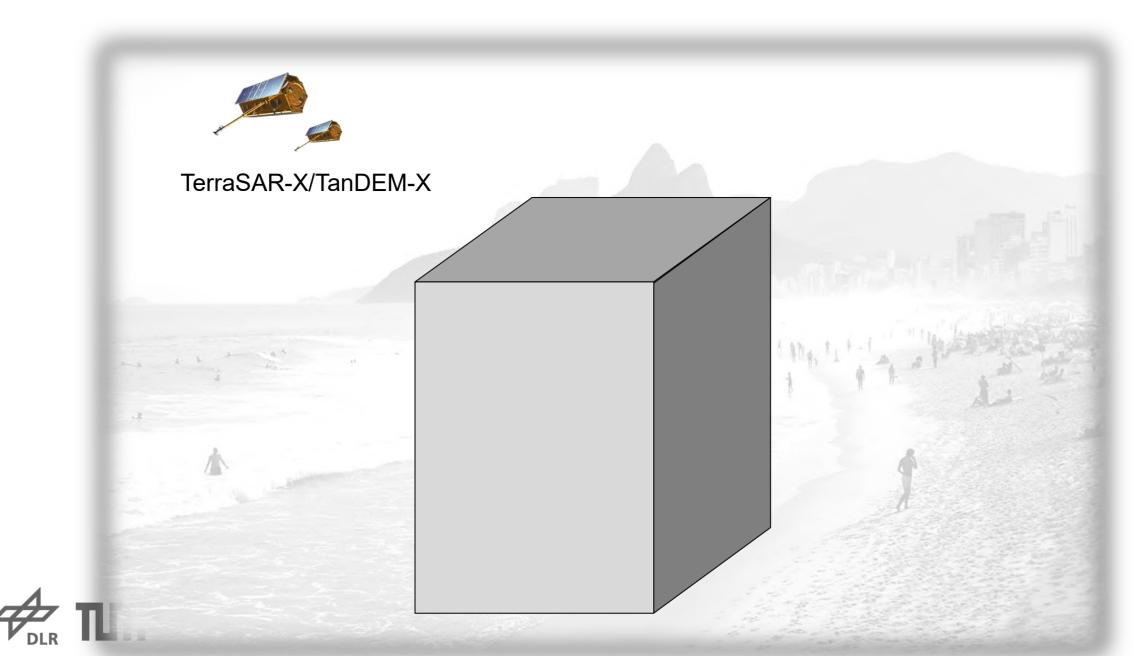


So2Sat in a Nutshell

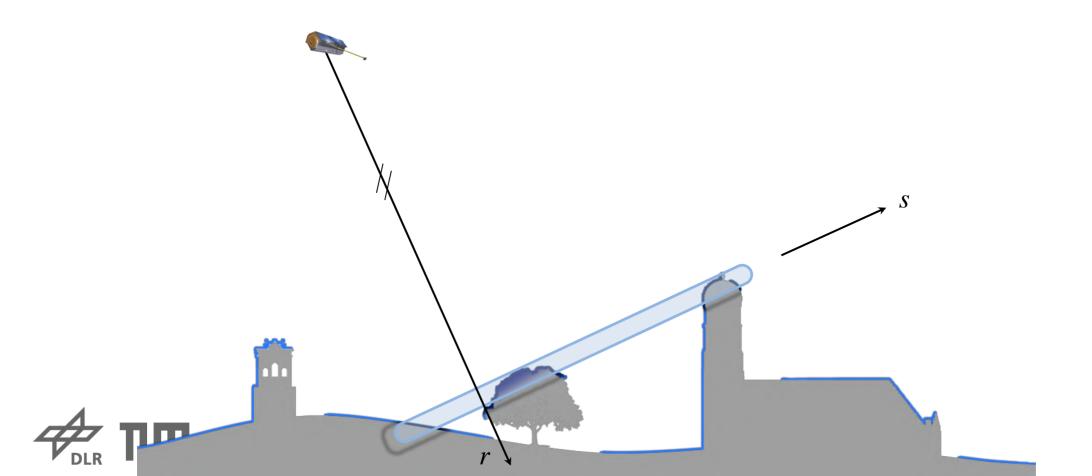


10 Petabytes = half of the archive at DFD

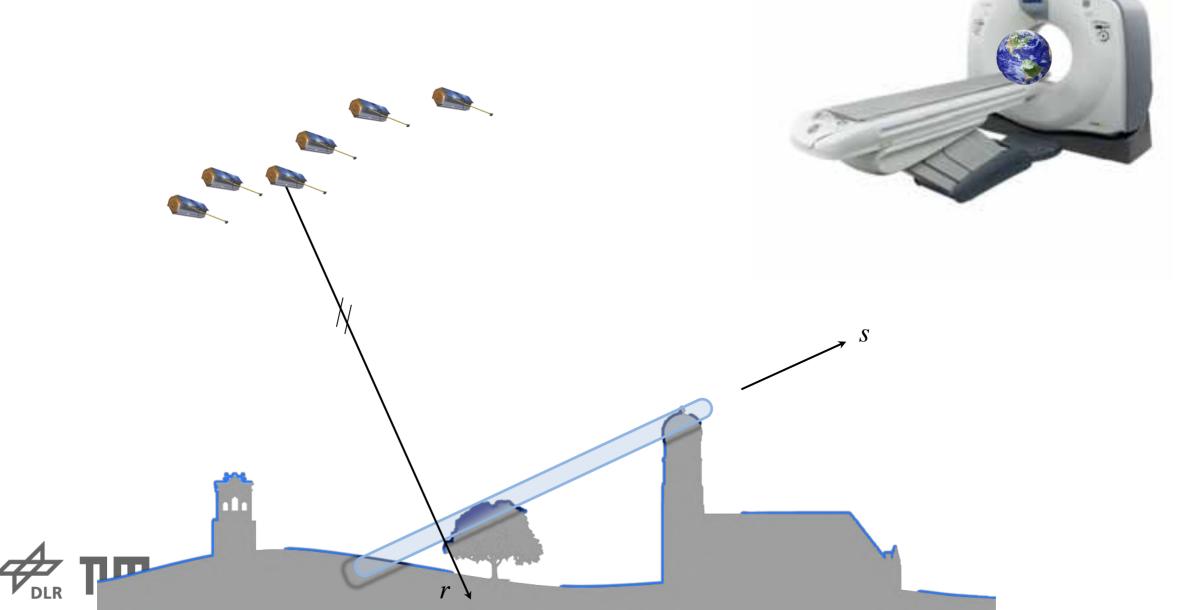
Global 3D/4D Urban Mapping



Radar Geometry in Range-Elevation Plane



Radar Tomography – "X-Ray" of the Earth

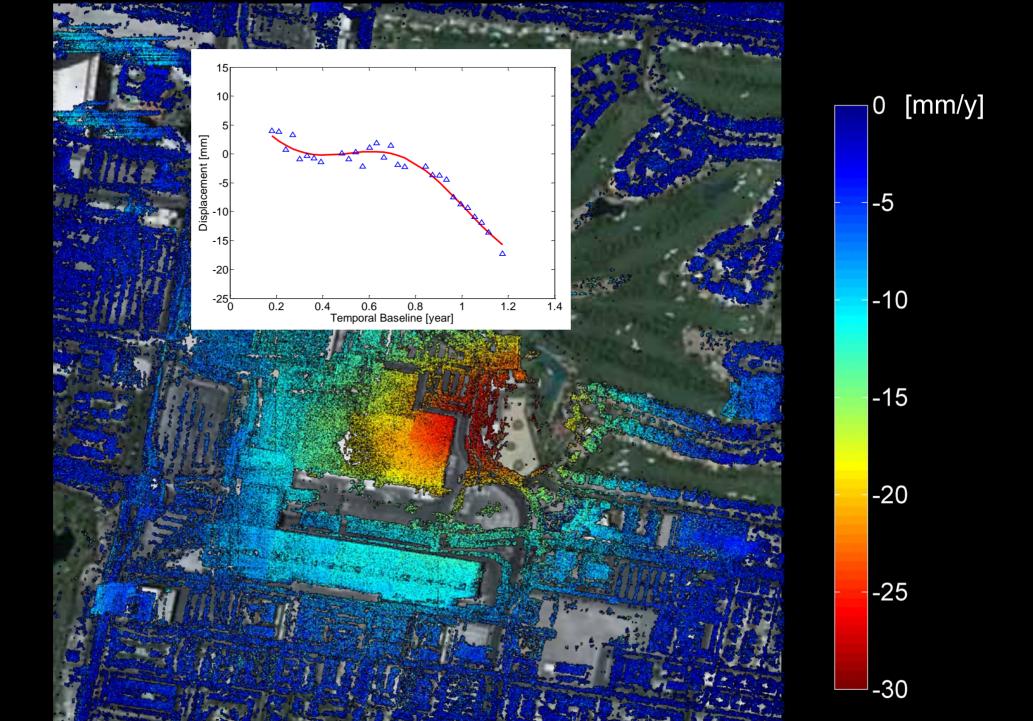


4D City@ LRZ

Calculation for **every single pixel** = solving optimization for problem with a matrix dimension of ca. 10² × 10⁶

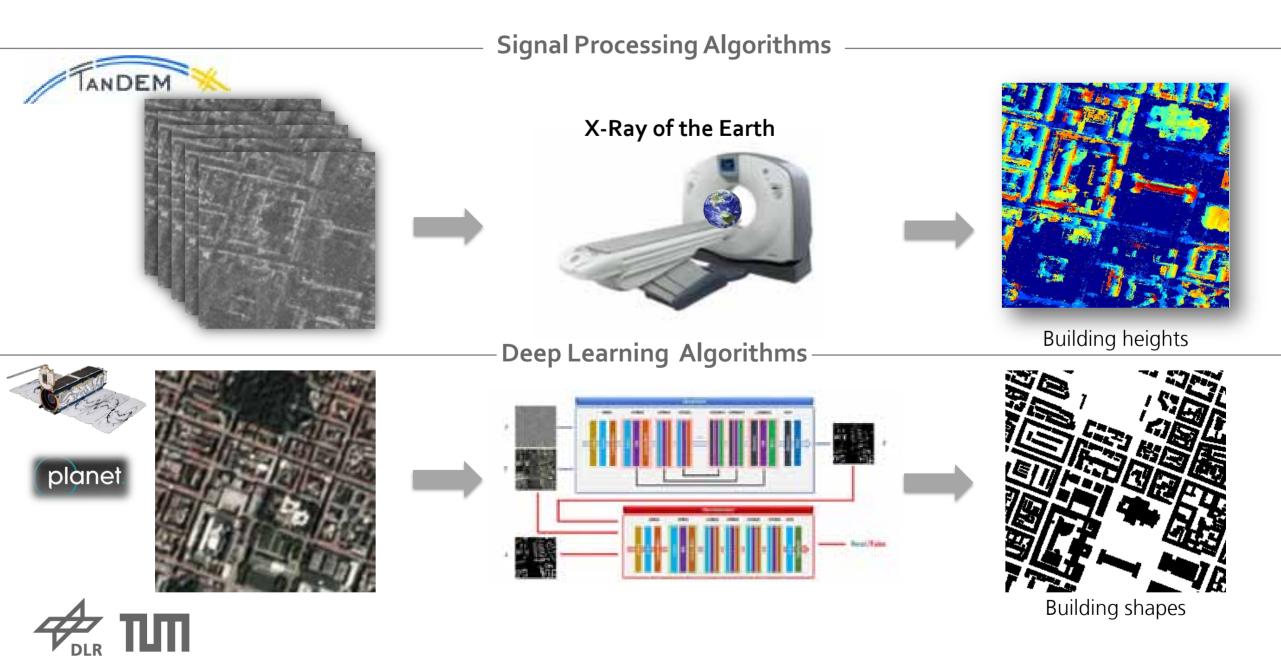
since 2012, 26mio CPU hours granted <

ca. 1 million Pts/km², 4D Information



global?

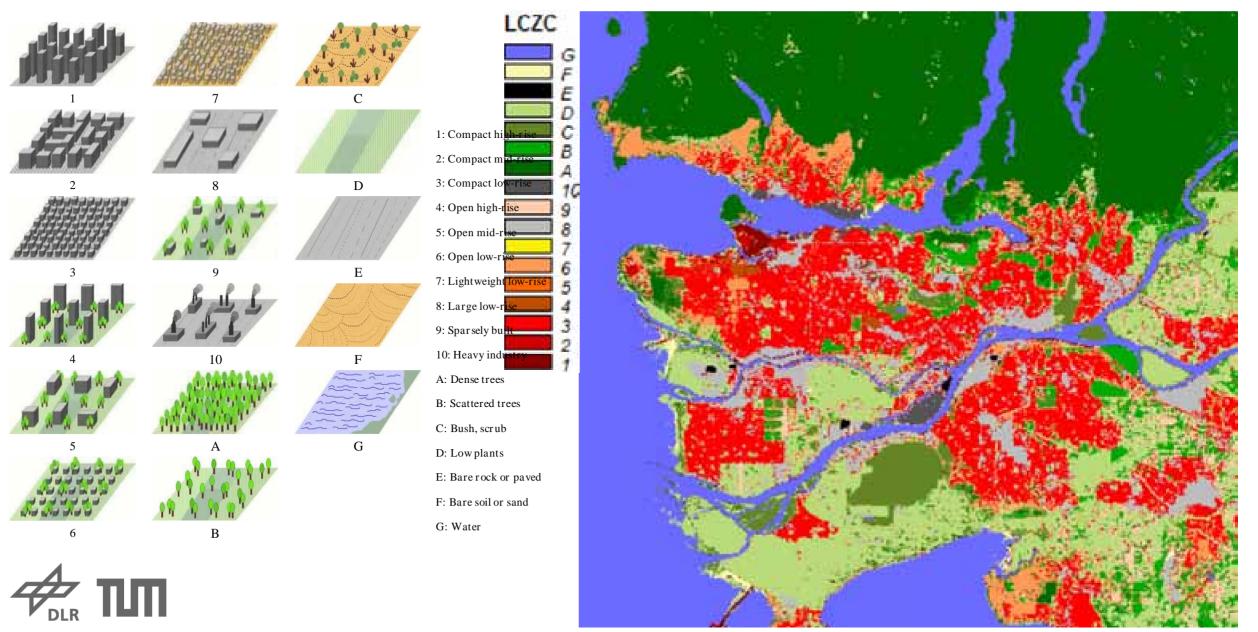
TanDEM-X for Global Coverage, But... medium resolution , small number of images

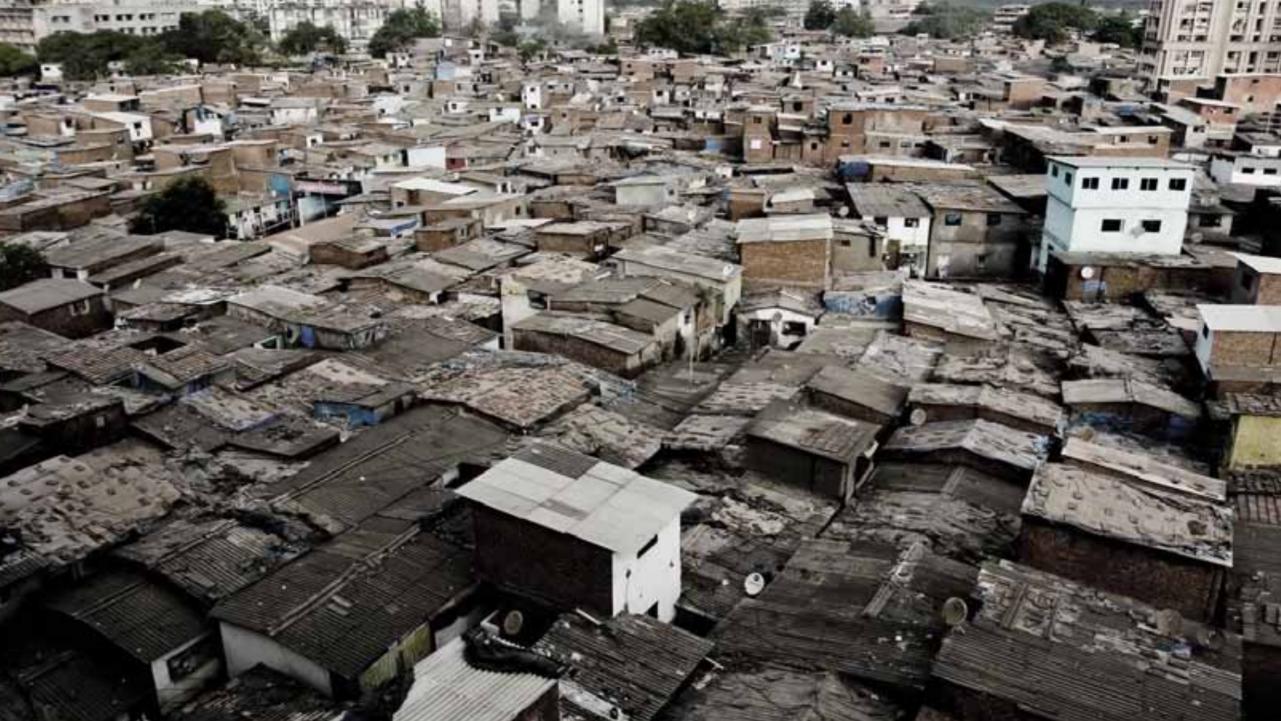


First Impression of the Global 3D Urban Models accuracy better than 2m

settlement type? → morphological structure first

Global Local Climate Zones Classification will be global soon

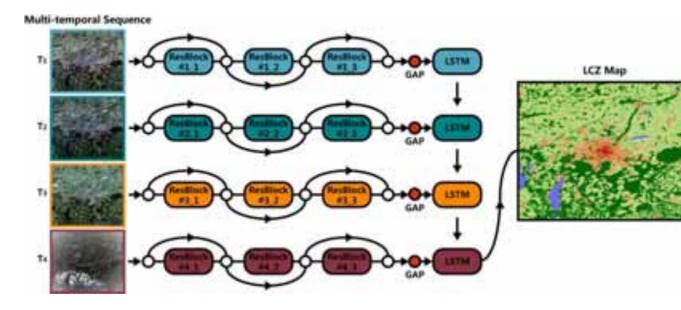




So2Sat LCZ42 Benchmark Dataset

- Hand labelled 42 cities covering 10 culture zones
- Data:
 - Sentinel-1
 - Sentinel-2, seasonal
- 10 votes for each label

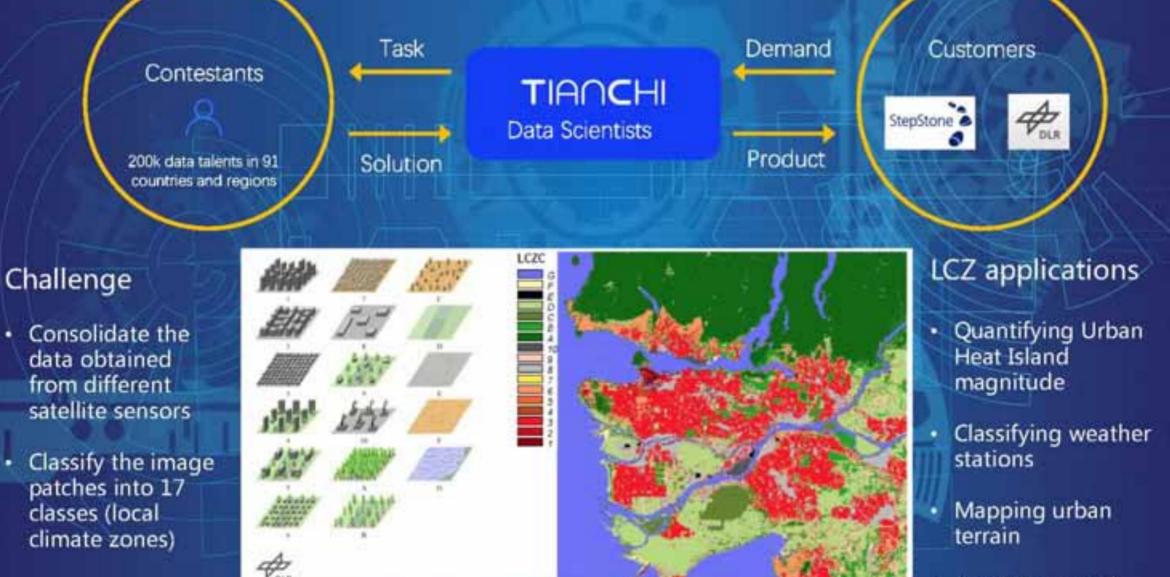
Labeling effort: 15 person × 1 Month/person



DLR/StepStone/AliCloud Tianchi Contest 2018 Germany

.

٠

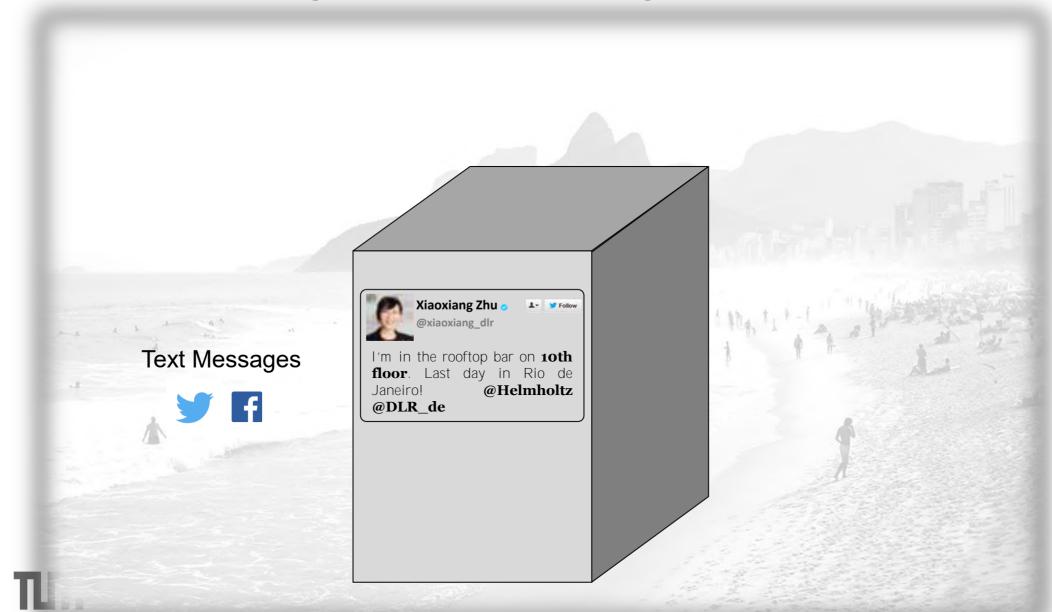


Assessing social inequalities

tweeting for social good?

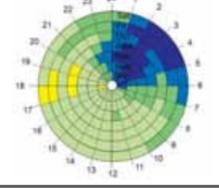
Building Settlement Type Classification

- by the Fusion of Remote Sensing and Social Media Text Messages



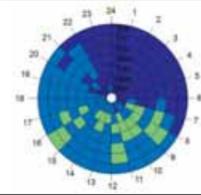
Tweets for Building Functions Identification

 a and a second second processing in a second se second sec



0~50
50~100
100~200
200~300
300~400
400~

non-residential



Ready for a good long sleep at a hortest, charging batteries for tonversed asktoberhest gr.,

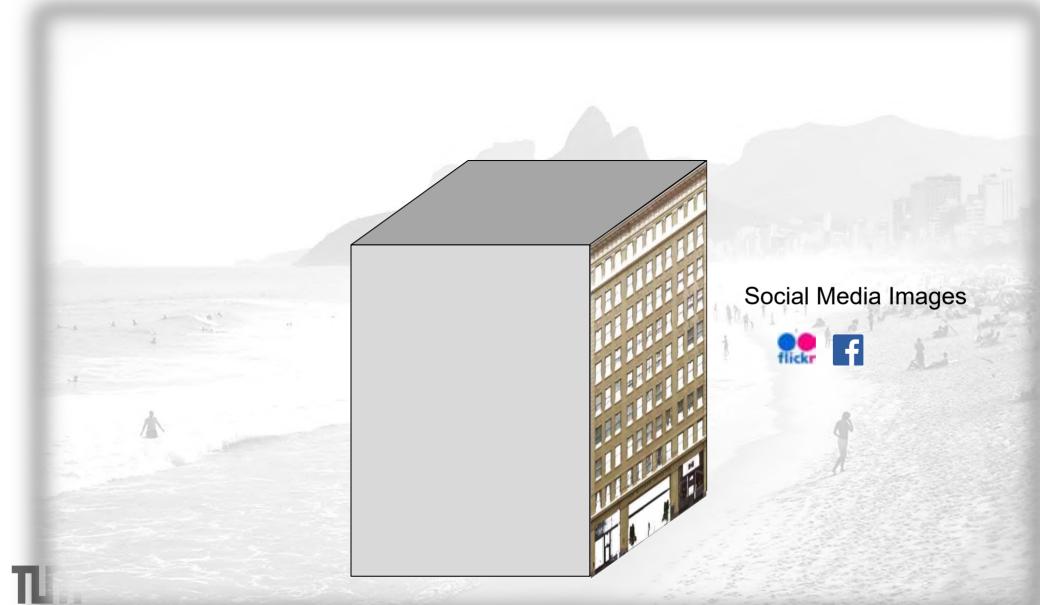
Preliminary Results – OSM Ground Truth

residential commercial

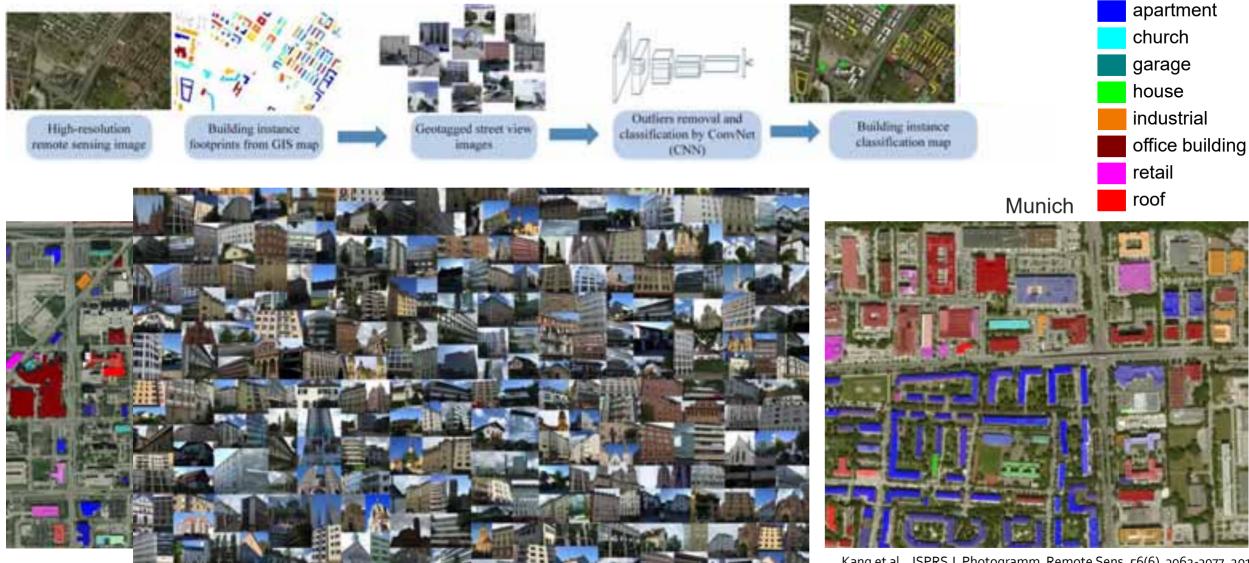
Preliminary Results – Tweets Predicted

Building Settlement Type Classification

- by the Fusion of Remote Sensing and Social Media Images



Building Instance Classification from Street View Data by CNN



Kang et al., ISPRS J. Photogramm. Remote Sens. 56(6), 3062-3077, 2018

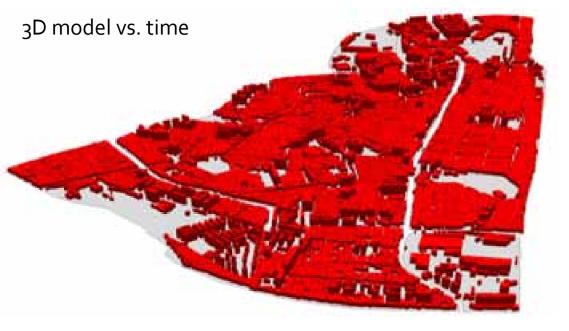
Flickr Random Search

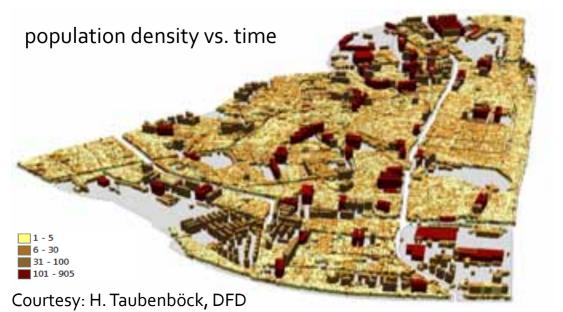
- Queries Flickr API with random bounding boxes
- Up to 100,000 geotagged photos/day per bot
- Ca. 17.1 Mio geotagged Images

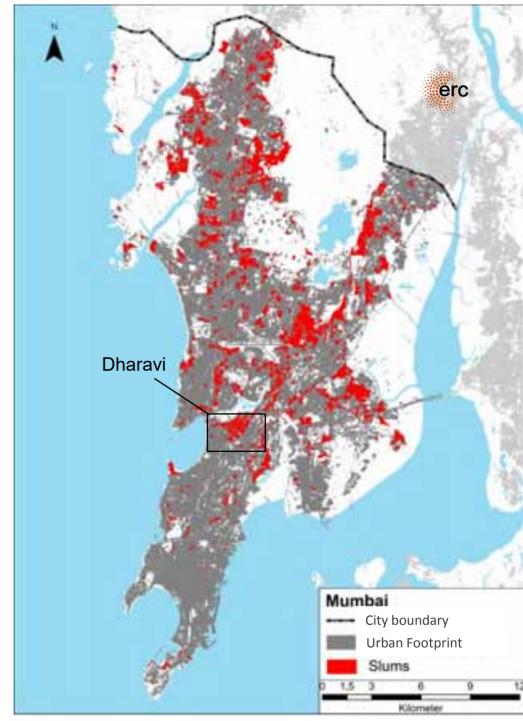
Predict Settlement Types Using Social Media Images

Our Vision in 2022

A first and unique global and consistent 3D/4D spatial data set on the urban morphology

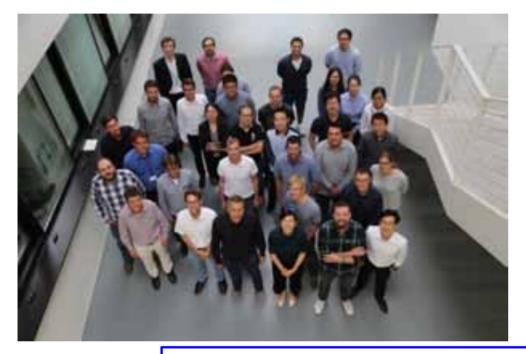






The So2Sat Data will be Open

- **better understanding** and **boosting research** on the global change process of urbanization
- unique data set for stakeholders such as the United Nations
- a helping hand to address **poverty**



DLR/Alibaba AI4EO Challenge

Global urban mapping So2Sat

AI4EO research @DLR&TUM

Join us for AI4EO:

Contact: xiaoxiang.zhu@dlr.de

