

Validation and uncertainties of a multi frequency altimetry snow depth product over the Arctic ocean at different scales

Carret A¹, <u>Fleury S²</u>, Di Bella A³, Landy J⁴, Lawrence I³, Kurtz N⁵, Laforge A², Bouffard J³, Parrinello T³

¹ Serco ² LEGOS ³ ESA ⁴ UIT ⁵ NASA

Measurement of sea ice thickness by altimetry

Measurement of sea ice thickness by altimetry

Carret et al.

Measurement of sea ice thickness by altimetry

Measurement of sea ice thickness by altimetry

LaKu snow depth product

CryoSat-2:

Doppler beam: (300-450)m x 1.5 km

IceSat-2:

Granules: Ls x 17m , Ls \in [10m,150m] Swath: 6.6 km x 10 km

Missions		Launched	Main payload
CryoSat-2		April 2010	Ku-band SAR (SIRAL)
ICESat-2		Sept 2018	6 beams LIDAR (ATLAS)

LaKu snow depth product

Comparisons with other snow products

LaKu:	LaKu UoL, LaKu UIT, LaKu Kacimi	
KaKu:	KaKu LEGOS, <mark>KaKu UoL</mark> , <mark>KaKu UIT</mark>	
Radiometry:	AMSR-Bremen	
Models:	PIOMAS, NESOSIM, SnowModel-LG	
Climatology: W99m		

- → Correlations above 0.8 with all products (except KaKu UIT abd KaKu UoL)
- Best agreement with LaKu Kacimi, LaKu UiT, AMSR, KaKu LEGOS

9

Comparison and validation of the snow depth product

In situ datasets

BGEP

- 4 moorings in the Beaufort Gyre with an upward-looking sonar
- Daily data since 2003
- Variable measured: draft

ICEBird

- Airborne survey with an ElectroMagnetic induction
- Campaign in winter and in summer since 2009
- Variable measured: snow depth

Operationnal IceBridge

- 10-year mission to collect polar data between ICE and ICESat-2
- Airborne measurements
- Period of campaign: April 2019
- Variable measured: snow depth

Comparison with OIB snow radar

eesa

Comparison with OIB snow radar

Carret et al.

· e e sa

Comparison with BGEP moorings !?

radar freeboard FB_{ku} + snow depth SD => Draft

Draft =
$$\frac{\rho_i FB_{ku} + \rho_i^* ((1 + U\rho_s)^{1.5} - 1) SD + \rho_s SD}{\rho_w - \rho_i}$$

Comparison with BGEP moorings

Comparison with BGEP moorings

Very close results between the 2 LaKu solutions whereas using different processing for the FBs KaKu less good but not far

Comparison with BGEP and ICEBird

16

0.99

Uncertainty on Sea Ice Thickness

SIT Equations

$$SIT(FB_{Ku}, SD) = \frac{\rho_{w}}{\rho_{w} - \rho_{i}} FB_{Ku} + \frac{\rho_{w} (1 + T\rho_{s})^{1.5} - \rho_{w} + \rho_{s}}{\rho_{w} - \rho_{i}} SD \qquad (Equ. 1)$$

$$SIT (FB_{La}, SD) = \frac{\rho_w}{\rho_w - \rho_i} FB_{La} + \frac{\rho_s - \rho_w}{\rho_w - \rho_i} SD$$
(Equ. 2)

SIT
$$(FB_{Ku}, FB_{La}) = \frac{\rho_w}{\rho_w - \rho_i} FB_{La} + \frac{\rho_s - \rho_w}{\rho_w - \rho_i} (1 + T\rho_s)^{1.5} (FB_{La} - FB_{ku})$$
 (Equ. 3)

Error propagation equation (case 3)

$$U_{ST}^{2} = U_{FBKu}^{2} \left[\frac{-\rho_{w} - (\rho_{s} - \rho_{w})/c/c_{s}}{\rho_{w} - \rho_{i}} \right]^{2} + U_{FBLaser}^{2} \left[\frac{\rho_{w} + (\rho_{s} - \rho_{w})/c/c_{s}}{\rho_{w} - \rho_{i}} \right]^{2} + U_{\rho_{s}}^{2} \left[\frac{FB_{Laser} - FB_{Ku}}{\rho_{w} - \rho_{i}} (1 - (\rho_{s} - \rho_{w})0.000765(1 + 0.00051\rho_{s})^{-1})] + U_{\rho_{w}}^{2} \left[\frac{-\rho_{i}FB_{Laser} + (\rho_{i} - \rho_{s})(FB_{Laser} - FB_{Ku})/c/c_{s}}{(\rho_{w} - \rho_{i})^{2}} \right]^{2} + U_{\rho_{i}}^{2} \left[\frac{f}{(\rho_{w} - \rho_{i})^{2}} \right]^{2}$$

Uncertainties

- → For a fix value of uncertainty: larger impact of FBlaser to the total SIT uncertainty
- → Simultaneous laser and Ku measurements → reduction of SIT uncertainties + estimation of Snow Depth

Uncertainties

- → For a fix value of uncertainty: larger impact of FBlaser to the total SIT uncertainty
- → Combining laser and Ku measurements → reduction of SIT uncertainties + estimation of Snow Depth

CRYO2ICE

On July the 16th 2020, CryoSat-2's orbit was raised in order to periodically align ICESat-2 orbits over the Arctic ocean every 20/19 orbits (IS2/CS2).

- 20 tracks of coincidental measurements per month
- With a 2-3 hours delay
- Thousands of kilometers transects

Satellite footprints:

- CryoSat-2:
 - Doppler beam: (300-450)m x 1.5 km
- IceSat-2:
 - ➢ Granules: Ls x 17m , Ls ∈ [10m,150m]
 - Swath: 6.6 km x 10 km

CRYO2ICE

The CRYO2ICE tracks passing in the vicinity of the mooring provide slightly higher correlation (0.94 vs 0.91) than the monthly gridded product at the mooring point although the bias is a little higher (0.04 vs 0.02)

Conclusions

- Good agreement between the LaKu snow depth product and the in situ data
- The different LaKu snow depth solutions are very coherent -> stable solution
- SAR Ku processing based on physical model retracker provide better solutions (tested with TFMRA50)
- The KaKu solution is less efficient but close to LaKu. Recall: LRM versus SAR/Lidar!
 - See also the amazing results about LRM Ka processing shown in a poster from [Landy et al] !

Conclusions

- Good agreement between the LaKu snow depth product and the in situ data
- The different LaKu snow depth solutions are very coherent -> stable solution
- SAR Ku processing based on physical model retracker provide better solutions (tested with TFMRA50)
- The KaKu solution is less efficient but close to LaKu. Recall: LRM versus SAR/Lidar! See also the amazing results about LRM Ka processing in a poster from [Landy et al] !
- Simultaneous bi-frequency measurements lower SIT uncertainties.
- The CRYO2ICE project is an opportunity to demonstrate it
- Results very promising for CRISTAL (and CIMR) ...
 - ... but still work to do : Ku penetrations, ice and snow densities, Ka processing

... and need for in-situ snow depth measurements !

• Results published soon in [Carret et al., Scientific Data 2024]

Thanks for your attention