

PROGRAMME OF THE EUROPEAN UNION

co-funded with

Prisma4sen2like: a spectral aggregation tool to transform PRISMA L1 hyperspectral data into Sentinel-2 PRISMA multispectral data

Jérôme Louis¹, Patrice Canonici¹, Vincent Debaecker¹, Sébastien Saunier¹, Enrico Giuseppe Cadau², Francesco Pignatale³, Silvia Enache⁴, Rosario Quirino Iannone⁵, Ferran Gascon⁶, Valentina Boccia⁶

Telespazio France, 2: SERCO, Italy,
Telespazio Germany,
CS Group, 5: RHEA Group, Italy,
European Space Agency

→ THE EUROPEAN SPACE AGENCY

ESA UNCLASSIFIED - For ESA Official Use Only

- 1.Sen2like overview and status
- 2.PRISMA mission
- 3.PRISMA integration approach : prisma4sen2like
- 4. Spectral Aggregation details
- 5.PRISMA vs Sentinel-2 Geometry
- 6.Results

Purpose: The main goal of Sen2Like is to generate Sentinel-2 like harmonised/fused surface reflectances with higher periodicity by integrating additional compatible optical mission sensors.

Current missions supported: S2A, S2B, Landsat-8, Landsat-9

Effort to integrate a hyperspectral mission: PRISMA

The Sen2Like framework is a scientific and open source software.

Version 4.4 available since 2nd of August 2023: <u>https://github.com/senbox-org/sen2like</u>

Dedicated poster at S2VT6:

Sen2Like : A solution for harmonization and fusion of Sentinel-2 and Landsat 8/9 data *S. Saunier (Telespazio France)*

1. Sen2like overview and status

PROGRAMME OF THE EUROPEAN UNION

→ THE EUROPEAN SPACE AGENCY

*

·eesa

co-funded with

opernicus

2. PRISMA mission

PRISMA is a medium-resolution hyperspectral imaging satellite, developed, owned and operated by ASI (Agenzia Spaziale Italiana) Launched on 22 March 2019

Planned mission duration of 5 years.

Parameter	VNIR channel	SWIR channel	Pan channel
Spectral range	400-1010 nm	920-2505 nm	400-700 nm
Spectral resolution (FWHM)	≤ 12 nm	≤ 12 nm	-
Spectral bands	66	171	1
Swath width		30 km (FOV = 2	.45°)
Spatial resolution	30 m		5 m
Spatial detector pixels	1000 x 256 with	1 30 µm pitch	6000
IFOV	48.34 µrad		
Telescope type	TMA (Three	Mirror Anastigm	at)
Telescope aperture	210 mm entrance pupil diameter		
Telescope focal length	620 mm		
Data quantization	12 bit		
FOR (Field of Regard)	±15° (body pointing capability)		

opernicus

co-funded with

· Clesse

PROGRAMME OF THE EUROPEAN UNION

3. PRISMA integration approach

PROGRAMME OF THE OPERFICUS

3. PRISMA integration approach

Opernicus co-funded with

→ THE EUROPEAN SPACE AGENCY

4. Spectral Aggregation details

PRISMA spectral response of L1 coregistered images:

Same central wavelength (cw) and fwhm for all pixels across-track (smile and keystone corrected)

VNIR channels:

• 66 bands

opernicus

PROGRAMME OF THE EUROPEAN UNION

> cw and fwhm read from L1 product metadata

co-funded with

 Assumption of gaussian shape of the spectral response

· Cless

4. Spectral Aggregation details

Opernicus co-funded with

Sentinel-2A spectral response (VNIR):

https://sentinels.copernicus.eu/documents/247904/685211/S2-SRF_COPE-GSEG-EOPG-TN-15-0007_3.1.xlsx (June 2022)

→ THE EUROPEAN SPACE AGENCY

4. Spectral Aggregation details

- x : field of view location PRISMA ([0,1000]
- z : PRISMA spectral band
- k : spectral range interval
- b : Sentinel-2 band
- F: Sentinel-2A spectral response
- G: PRISMA gaussian spectral response
- W: unnormalized spectral weight for each PRISMA pixel
- P: normalized spectral weight for each PRISMA pixel
- H: Radiance value for each PRISMA pixel
- HB: Aggregated Radiance for a Sentinel-2 band

PRISMA and Sentinel-2A of spectral responses (illustration)

PROGRAMME OF THE EUROPEAN UNION

co-funded with

→ THE EUROPEAN SPACE AGENCY

opernicus

- J. Louis, "Simulation of Sentinel-2 MSI multispectral images using EO-1 Hyperion hyperspectral data.", Living Planet Symposium 2013
- P.S. Barry, et al., "EO-1 Hyperion Hyperspectral Aggregation and Comparison With EO-1 Advanced Land Imager and Landsat 7 ETM+". IGARSS 2002, Vol. III, 1648-1651.

EUROPEAN UNION

Reference L1C True Color Image S2A acquisition same day as PRISMA acquisition

Colour composition: RED: B04 [0-25%] GREEN: B03 [0-25%] BLUE: B02 [0-25%]

EUROPEAN UNION

L1C S2-PRISMA True Color Image superimposed on Reference L1C True Color Image S2A

Colour composition: RED: B04 [0-25%] GREEN: B03 [0-25%] BLUE: B02 [0-25%]

Errors overview

Monitored : S2P_L1C_T33TTG_20220714T100507_B04-30m.tif Reference : S2A_L1C_T33TTG_20220714T100046_B04-30m.tif

ELESPAZIO

Geometry assessment vs S2A

opernicus

Results obtained with KARIOS tool. For details, see poster:

KARIOS : A fast & efficient open source tool for geometric deformation analysis *S. Saunier (Telespazio France)*

opernicus co-funded with

Geometric Error distribution

Monitored : S2P_L1C_T33TTG_20220714T100507_B04-30m.tif Reference : S2A_L1C_T33TTG_20220714T100046_B04-30m.tif

Before geometric adjustment

Results obtained with KARIOS tool. For details, see poster:

KARIOS : A fast & efficient open source tool for geometric deformation analysis *S. Saunier (Telespazio France)*

100

PROGRAMME OF THE co-funded with opernicus

Geometric Error distribution

Monitored : L2H T33TTG 20220714T100507 S2P R099 B04 30m.TIF Reference : S2A L1C T33TTG 20220714T100046 B04-30m.tif

After geometric adjustment

Results obtained with KARIOS tool. For details, see poster:

KARIOS : A fast & efficient open source tool for geometric deformation analysis S. Saunier (Telespazio France)

80

PROGRAMME OF THE co-funded with opernicus

Geometric Error distribution

 $\label{eq:monitored} \begin{array}{l} \mbox{Monitored}: \mbox{L2H}_{33}\mbox{T33TTG}_{20220714}\mbox{T100507}_{52P}\mbox{R099}_{B04}\mbox{B04}_{30m}.\mbox{TIF} \\ \mbox{Reference}: \mbox{S2A}_{L1C}_{T33}\mbox{TTG}_{20220714}\mbox{T100046}_{B04}\mbox{B04}_{30m}.\mbox{TIF} \\ \end{array}$

After geometric adjustment

Results obtained with KARIOS tool. For details, see poster:

KARIOS : A fast & efficient open source tool for geometric deformation analysis S. Saunier (Telespazio France)

80

100

6. Results

Sentinel-2 tile: 33TTG (Rome) 14th of July 2022

Visible (red = B04, green = B03, blue = B02)

Sun illumination angles almost identical:

ZENITH_ANGLE: 24.8 deg

AZIMUTH_ANGLE: 139.5 deg

175

S2A / PRISMA tandem acquisition (5 minutes difference)

ODERNICUS co-funded with

PROGRAMME OF THE EUROPEAN UNION

NIR-SWIR (red = B12, green = B11, blue = B8A)

Similar viewing angles conditions:		
S2A:	VZA ~ 8 deg ; VAA ~ 103 deg	
PRISMA:	VZA ~ 4 deg ; VAA ~ 110 deg	

· e esa

6. Results

Sentinel-2 tile: 33TTG (Rome) 14th of July 2022

100 -125 -150 -175 -200 -

125

150 175 200

B04 (red): mean: -0.4 %

S2A / PRISMA tandem acquisition (5 minutes difference)

PROGRAMME OF THE EUROPEAN UNION

OPERNICUS co-funded with

· e esa

Histogram of the differences: S2A – S2P B8A (NIR): mean: +0.8% B11 (SWIR 1): mean: +1.9% B12 (SWIR 2): mean: -0.4%

→ THE EUROPEAN SPACE AGENCY

The radiometric agreement of PRISMA mission with Sentinel-2A looks good at TOA reflectance, within 1% of mean difference except for B11 slightly brighter (+1.9 %) for S2A.

These results were obtained using the **prisma4sen2like** tool for spectral aggregation of PRISMA bands and a dedicated geometric correction within sen2like geometry block.

The prisma4sen2like tool is available within the Sen2Like framework, a scientific and open-source software at:

https://github.com/senbox-org/sen2like/tree/master/prisma4sen2like

Funded by the EU and ESA

European Union The views expressed herein can in no way be taken to reflect the official opinion of the European Space Agency or the European Union

Thank you for your attention!

🖣 🔜 📕 🚍 💳 🛶 📲 🔚 📲 🔚 📲 🚍 🛻 🚳 🛌 📲 🗮 🔤 🖬 📲 🛶 🖓