SMB from RCMs: structural uncertainties in sea level projections from both ice sheets

Ruth Mottram, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Michiel van den Broeke, Christiaan van Dalum, Alison Delhasse, Xavier Fettweis, Christoph Kittel, Quentin Glaude, Heiko Goelzer, **Nicolaj Hansen**, Brice Noel, Anna Puggaard, Martin Olesen, Sebastian Simonsen.

*Danish Meteorological Institute, nih@dmi.dk

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT 869304.

Surface Mass balance of ice sheets: atmospheric and surface coupling

Atmosphere, snow and firn processes required for SMB:

SMB = RF + SF - RU - SU + DE

Runoff = Melt + Rainfall + Condensation - Retention - Refreeze

SEB = SWD - SWU + LWD - LWU + SHF + LHF + GHF

Frozen lake surface

Present Day SMB from RCMs with Climate Reanalysis: GrIS

	SMB		Snowfall			Runoff			
	Mean	SD	Trend	Mean	SD	Trend	Mean	SD	Trend
BESSI	387	80	-4.1	566	54	0.3	134	52	4.2
BOX13	426	99	-6.5	718	61	-0.3	508	118	9.1
CESM	421	87	-3.1	668	59	0.1	276	66	4.0
dEBM	359	121	-8.1	604	59	-0.1	280	108	8.6
HIRHAM	398	109	-7.3	701	63	-1.5	491	123	8.2
IMAU-ITM	281	129	-8.7	638	62	0.4	382	122	9.5
MAR	372	122	-7.8	640	55	-0.5	302	107	8.0
MPI-ESM	284	101	-3.5	558	59	0.5	336	70	4.0
NHM-SMAP	429	99	-4.3	807	81	1.3	260	79	6.1
PDD1km	332	101	-6.3	519	55	0.2	230	87	7.0
PDD5km	285	111	-6.8	534	56	0.3	278	97	7.5
RACMO	357	115	-7.2	667	59	-0.7	306	90	6.7
SNOWMODEL	96	179	-12.9	665	65	0.3	469	171	13.4
ENSEMBLE	338	111	-7.3	642	59	0.0	331	102	8.0

Mean

Present Day SMB from RCMs with Climate Reanalysis: AIS

GrIS (Gt yr ⁻¹)	$IS (Gt yr^{-1})$	ToTIS (Gt yr ⁻¹)	Area (10^6 km^2)
1929	471	2391	13.85
2132	430	2555	13.85
2032	437	2462	13.85
2227	413	2633	13.92
2156	395	2545	13.92
2323	437	2752	13.87
2233	434	2657	13.83
1883	452	2327	13.82
1743	287	2023	13.84
2073	417	2483	13.86
306	77	266	0.085
	GrIS (Gt yr ⁻¹) 1929 2132 2032 2227 2156 2323 2233 1883 1743 2073 306	$\begin{array}{c} {\rm GrIS} & {\rm IS} \\ {\rm (Gtyr^{-1})} & {\rm (Gtyr^{-1})} \\ \end{array} \\ \begin{array}{c} 1929 & 471 \\ 2132 & 430 \\ 2032 & 437 \\ 2032 & 437 \\ 2227 & 413 \\ 2156 & 395 \\ 2323 & 437 \\ 2233 & 437 \\ 2233 & 434 \\ 1883 & 452 \\ 1743 & 287 \\ 2073 & 417 \\ 306 & 77 \\ \end{array} $	$\begin{array}{c} {\rm GrIS} & {\rm IS} & {\rm ToTIS} \\ ({\rm Gt}{\rm yr}^{-1}) & ({\rm Gt}{\rm yr}^{-1}) & ({\rm Gt}{\rm yr}^{-1}) \\ \end{array} \\ \begin{array}{c} 1929 & 471 & 2391 \\ 2132 & 430 & 2555 \\ 2032 & 437 & 2462 \\ 2227 & 413 & 2633 \\ 2156 & 395 & 2545 \\ 2323 & 437 & 2752 \\ 2233 & 434 & 2657 \\ 1883 & 452 & 2327 \\ 1743 & 287 & 2023 \\ 2073 & 417 & 2483 \\ 306 & 77 & 266 \\ \end{array}$

sparse

Greenland Regional Climate Models:

MAR

15km resolution

Albedo scheme adjusts for snow properties and clouds constant in bare ice zone at 0.55.

Irreducible water saturation = 7%

CMIP6 model		ssp126	ssp245	ssp585/rcp8.5	
	CESM2	RACMO2,MAR, HIRHAM5	RACMO2, MAR	RACMO2, MAR, HIRHAM5	
_	CNRM-CM6-1			MAR	
	MPI-ESM1-2-HR	MAR	MAR	MAR	
	UKESM1-0-LL	HIRHAM5	HIRHAM5	HIRHAM, MAR	
	CNRM-ESM2			MAR	
	EC-EARTH v3	HIRHAM5		,HIRHAM5	
	NorESM2	HIRHAM5	MAR	MAR HIRHAM5	

RACMO2.3p2

11km resolution

Snow albedo based on snow impurities, zenith angle, and metamorphism, bare ice albedo is derived from a MODIS 5% lowest values, averaged over 2000-2015.

Irreducible water saturation = 2%

A range of future projections are available.

5km resolution

HIRHAM5Albedo: linear ramping of snow albedo ranging from 0.85 below -5 °C to 0.65 at 0 °C, bare ice remains constant at 0.4 with transition albedo is determined for thin snow layers on ice.

> Irreducible water saturation = 7%

CESM2 SSP5-8.5 as common forcing: GrIS

-250

-1000

2000 \$

-3000

-4000

2081-2100

From Quentin Glaude

Differences between models are driven by melt and runoff

RACMO: 82% melt to runoff conversion,

b)

converted to runoff.

500

-500

-1000

-1500

-2000

3500

3000

2500

Melt [Gt/yr] 12000

1000

500

0

a)

RCMs have non-uniform response to temperature anomalies.

RACMO and HIRHAM are higher than MAR at low temperatures but MAR has steeper curve up at higher temperatures From Quentin Glaude

Surface Energy Budgets have compensating errors (GrIS)

Radiation and cloud parameterisations likely account for some differences:

- Mixed phase clouds (cloud cover and cloud optical depth) _
- Surface albedo scheme differences _

From Quentin Glaude

Liquid clouds reflect SWin and absorb LWout radiation

Ice clouds reflect less SWin and absorb less LWout radiation

Different model sensitivities to temperature change

From Quentin Glaude

Melt – albedo feedback, but also IWS is key!

Ablation area has different sensitivities to temperature

RACMO: higher runoff from smaller fraction of area

From Quentin Glaude

Preprint out now:

A Factor Two Difference in 21st-Century Greenland Ice Sheet Surface Mass Balance Projections from Three Regional Climate Models for a Strong Warming Scenario (SSP5-8.5)

Quentin Glaude¹, Brice Noël², Martin Olesen³, Michiel R. van den Broeke⁴, Willem Jan van de Berg⁵, Ruth Mottram³, Nicolaj Hansen³, Alison Delhasse¹, Charles Amory⁶, Christoph Kittel⁷, Heiko Goelzer⁸, and Xavier Fettweis⁹

¹Universite de Liege ²Laboratoire de Climatologie et Topoclimatologie ³Danish Meteorological Institute ⁴Utrecht University ⁵University of Utrecht ⁶Institut des Geosciences de l'Environnement ⁷University of Liège ⁸NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway ⁹University of Liege, Belgium

doi.org/10.22541/essoar.172537578.84386972/v

Diverging future projections over Antarctic ice shelves

CRYOSPHERE & SEA LEVEL

From Charles Amory

Different model sensitivities to temperature change

Surface melt and Cloud phases

From Hansen et al 2024

MetUM 14th / CLWP

Global climate models rarely produce SMB over ice sheets and regional climate simulations produce similar SMB values at present day Small differences between regional climate model physics parameterisatons can lead to large long-term large differences in SMB

projections, outside of driving climate induced uncertainty

Differences in radiation schemes and cloud parameterisations are important but s mall differences in firn and snowpack parameterisations can lead to long-term differences in retention, refreezing and runoff

We have a *large* amount of RCM projections over both Greenland and Antarctica forced by CMIP6 all publically available for analysis SMB emulation and new model parameterisations under development for CMIP7

