Ruth Mottram, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Michiel van den Broeke, Christiaan van Dalum, Alison Delhasse, Xavier Fettweis, Christoph Kittel, Quentin Glaude, Heiko Goelzer, **Nicolaj Hansen**, Brice Noel, Anna Puggaard, Martin Olesen, Sebastian Simonsen.

*Danish Meteorological Institute, nih@dmi.dk

SMB from RCMs: structural uncertainties in sea level projections from both ice sheets

NORCE

Surface Mass balance of ice sheets: atmospheric and surface coupling

Frozen lake surface

Atmosphere, snow and firn processes required for SMB:

 $SMB = RF + SF - RU - SU + DE$

 $Runoff = Melt + Rainfall + Condensation - Retention - Refreeze$

 $SEB = SWD - SWU + LWD - LWU + SHF + LHF + GHF$

Present Day SMB from RCMs with Climate Reanalysis: GrIS

Ensemble Mean

Present Day SMB from RCMs with Climate Reanalysis: AIS

DMI

sparse

Greenland Regional Climate Models:

15km resolution

Irreducible water saturation $= 7\%$

Albedo scheme adjusts for snow properties and clouds constant in bare ice zone at 0.55.

> Irreducible water saturation $= 2\%$

11km resolution

Snow albedo based on snow impurities, zenith angle, and metamorphism, bare ice albedo is derived from a MODIS 5% lowest values, averaged over 2000-2015.

HIRHAM5Albedo: linear ramping of snow albedo ranging from 0.85 below −5 °C to 0.65 at 0 °C, bare ice remains constant at 0.4 with transition albedo is determined for thin snow layers on ice.

> Irreducible water saturation $= 7\%$

5km resolution

MAR RACM02.3p2

A range of future projections are available..

CESM2 SSP5-8.5 as common forcing: GrIS

 -250

 -1000

 -2000 \geq

 -3000

 -4000

2081- 2100

From Quentin Glaude

Differences between models are driven by melt and runoff

RCMs have non-uniform response to temperature anomalies.

RACMO and HIRHAM are higher than MAR at low temperatures but MAR has steeper curve up at higher temperatures From Quentin Glaude

RACMO: 82% melt to runoff

3500

3000

2500

 $\frac{1}{2}$ 2000
 $\frac{1}{2}$ 1500
 $\frac{1}{2}$ 1500

1000

 $\mathbf{0}$

 -2

Radiation and cloud parameterisations likely account for some differences:

- Mixed phase clouds (cloud cover and cloud optical depth)
- Surface albedo scheme differences

Surface Energy Budgets have compensating errors (GrIS)

Liquid clouds reflect SWin and absorb LWout radiation

Ice clouds reflect less SWin and absorb less LWout radiation

From Quentin Glaude

Different model sensitivities to temperature change

BIART ERYOSPHERE & SEA LEVE

Melt – albedo feedback, but also IWS is key!

From Quentin From Quentin Glaude
 Glaude

Ablation area has different sensitivities to temperature

RACMO: higher runoff from smaller fraction of area

Preprint out now:

A Factor Two Difference in 21st-Century Greenland Ice Sheet Surface Mass Balance Projections from Three Regional Climate Models for a Strong Warming Scenario (SSP5-8.5)

Quentin Glaude¹, Brice Noël², Martin Olesen³, Michiel R. van den Broeke⁴, Willem Jan van de Berg⁵, Ruth Mottram³, Nicolaj Hansen³, Alison Delhasse¹, Charles Amory⁶, Christoph Kittel⁷, Heiko Goelzer⁸, and Xavier Fettweis⁹

¹Universite de Liege ²Laboratoire de Climatologie et Topoclimatologie ³Danish Meteorological Institute ⁴Utrecht University ⁵University of Utrecht 6 Institut des Geosciences de l'Environnement ⁷University of Liège ⁸NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway ⁹University of Liege, Belgium

doi.org/10.22541/essoar.172537578.84386972/v

Diverging future projections over Antarctic ice shelves

CRYOSPHERE & SEA LEVEL

Different model sensitivities to temperature change

Surface melt and Cloud phases

From Hansen et al 2024

180

 180°

CERES 14th / CIWP 85.5

CERES 14th / CLWP

 0.5

 $70°S$ $70^\circ S$ \circ

CERES 17th / CIWP

0.01 0.02 0.05 0.1 0.2 0.5

MetUM 14th / CLWP

MetUM 17th / CLWP

Global climate models rarely produce SMB over ice sheets and regional climate simulations produce similar SMB values at present day Small differences between regional climate model physics parameterisatons can lead to large long-term large differences in SMB

SMB emulation and new model parameterisations under development for CMIP7 Summary SMB emulation and new model parameterisations under development for CMIP7 **We have a *large* amount of RCM projections over both Greenland and Antarctica forced by CMIP6 all publically available for analysis**

projections, outside of driving climate induced uncertainty

Differences in radiation schemes and cloud parameterisations are important but s mall differences in firn and snowpack parameterisations can lead to long-term differences in retention, refreezing and runoff