Energy Transport in the Magnetosphere–Ionosphere System by Cluster and Swarm Observations

Octav Marghitu, Dragoș Constantinescu, Vlad Constantinescu, Adrian Blăgău, Horia Comișel

Institute for Space Sciences, Bucharest, Romania

Swarm 10 Year Anniversary & Science Conference

08 – 12 April 2024 | Copenhagen, Denmark

Concept

Overview

Former studies => Mainly BBF dynamics

Birn et al. (2004)

Here => Emphasis on BBF energetics

- **A.** Intro Poynting flux
 - Poynting flux fed to ionosphere
 - Poynting flux in the magnetosphere
 - Poynting flux by Swarm
- **B.** Two Cluster Swarm events
 - Selection
 - Sep 29, 2014
 - Aug 5, 2014
- **C.** Caveats
- **D.** Cluster Swarm GBO event
- E. Summary and prospects

A. Intro: Poynting Flux Fed to Ionosphere

A. Intro: Poynting Flux in the Magnetosphere

A. Intro: Poynting Flux by Swarm

 Systematic examination of Poynting flux and reflection of Alfvén waves in the auroral region

Park et al. [2017]

Take over the systematic study based on just one satellite, in this case Swarm, to conjugate events, like Cluster – Swarm ?

A. -> B. Cluster BBF – Swarm Events

- Question: Can one aim for a systematic examination of Cluster BBF events conjugate to Swarm data? And ideally also with optical data, at least in a couple of cases?
- The question is posed for Cluster and Swarm data, but can be extended to any properly equipped magnetospheric (MMS, THEMIS,...) and ionospheric (DMSP,...) satellites.
- Answering this question is important from a fundamental perspective, since BBFs are regarded as a key carrier of energy, momentum, and magnetic flux, in particular during disturbed times.
- The question is relevant also from a practical perspective, given the occurrence of potentially harmful space weather events during disturbed times.
- A systematic study is expected to consist of a broad range of specific cases, to include conjunctions with field-aligned potential drop in between (like the two events in the Intro), conjunctions without potential drop, various reflection coefficients of the Poynting flux at the ionosphere, etc.
- In the following we start to address this question, by assembling a procedure illustrated with a couple of Cluster BBF Swarm events. To be extended first by more Cluster BBF Swarm events and later by further events from other spacecraft.

B. Two Cluster – Swarm Events: Selection

5 August 2014 – 'Bad'

29 Septemeber 2014 – 'Good'

Some 40 C4 – SA and 30 C4 – SB tentative conjugate BBF events in 2014
Some 10 events selected for further examination of which 3 about ok (e.g., 29 Sen

Some 10 events selected for further examination, of which 3 about ok (e.g., 29 Sep – see next), the others not ok (e.g., 5 Aug – see next)

B. Cluster – Swarm 'Good' Event, 29 Sep 2014

Poynting Swarm H

SPACE SCIENCE

- B and Poynting flux S band pass filtered between 40 mHz and 1 Hz
 Maximum S at Cluster ~5000 mW/km², mapping to some 10 mW/m² (mapping factor ~2000), but S is not strictly field-aligned.
- Maximum S at Swarm ~1 mW/m², less than at Cluster, but underestimate and perhaps comparable, given also fieldalignment (top polar plots and blueyellow bottom spectrograms).
- Cluster S, Swarm N, but Cluster close enouugh to the Earth and to the quasidipolar region.

Poynting Cluster

B. Cluster – Swarm 'Bad' Event, 5 Aug 2014

Poynting Swarm H

INSTITUTE OF SPACE SCIENCE

- B and Poynting flux S band pass filtered between 40 mHz and 1 Hz
- Maximum S at Cluster ~400,000 mW/km², mapping to some 800 mW/m² (mapping factor ~2000), i.e., huge.
- However, in this case B is close to the Cluster spin plane => S not reliable!!
- Maximum S at Swarm ~0.5 mW/m², much less than at Cluster, but this is not a good event to compare.
- Cluster S, Swarm N, this time Cluster deeper in the tail, i.e., comparison even more problematic.

C. Caveats

Cluster

- Just C1 and C4 with ion data during Swarm life
- C1/HIA poor duty cycle, < 5% (< 1 h / day)</p>
- C4/CODIF large noise because of poor count statistics (mass resolution + MCP aging)
- Angle between B and spin plane
- Swarm
 - Better accuracy for cross-track velocity, i.e., along-track electric field

Both

- Conjunction accuracy in space
- Conjunction accuracy in time
- Relationship to aurora scales and dynamics

D. Cluster – Swarm – GBO Event (limited number): Jan 7, 2015

E. Summary and Prospects

Summary

- Limited selection of Cluster Swarm events because of caveats
- Even more limited for triple conjunctions
- Still, case studies show promises for further examination of Cluster–Swarm events

Prospects

. . .

- Improve event statistics by looking also at 2015 2023
- Check as well triple conjunctions => hunt for at least one good event
- Extend the study to other magnetospheric satellites like MMS and THEMIS, e.g., BBF database for MMS under project FBURST, poster by Vanina Lanabere
- Merge energy transfer and momentum transfer perspectives
- Relate to space weather studies, like correlation of in-situ FAC data, remote electrojet data, and ground magnetic perturbations under project SWESMAG, talk by Adrian Blăgău

