Retrieval of Terrestrial Snow and Cryosphere Parameters From CIMR

Kari Luojus, Lina Zschenderlein, Kimmo Rautiainen, Pinja Venäläinen, Matias Takala and Jouni Pulliainen

Finnish Meteorological Institute, Finland

2024 European Polar Science Week 3 - 6 September 2024, Copenhagen, Denmark

Retrieval of Terrestrial Snow and Cryosphere Parameters From CIMR

Contents:

Development of Cryosphere parameter retrievals for CIMR (CIMR L2PAD)

- Soil freeze/thaw status
- Terrestrial Snow Area
- Snow Water Equivalent
- + Retrieval of snow water equivalent in Copernicus & ESA CCI frameworks

Copernicus Imaging Microwave Radiometer (CIMR)

Mission Objective

Respond's directly to the Integrated EU Arctic Policy

- Climate Change and Safeguarding the Arctic
- Environment Sustainable Development in and around the Arctic
- International Cooperation on Arctic Issues
- Global SST capability

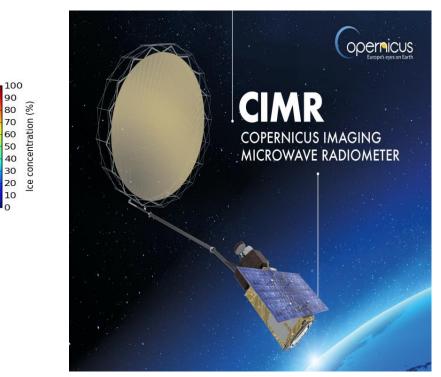
Characteristics

- Conically scanning multi-frequency microwave radiometer
- Single satellite, Observation Zenith angle 55±1.5°
- Loose convoy flight with MetOp-SG(B) ~300s separation
- ~95% global coverage every day, mean 6 hourly-revisit in Arctic Areas
- In Phase C, Launch: 2029

Channels (GHz, all H&V): Resolution (km):	1.4, ≤55		10.65, ≤10	18.7 ≤5	36.5 ≤5	
NEΔT (K @150K): Swath	≤0.3 > 190	≤0.2 0km	≤0.3	≤0.3	≤0.7	

Products (Performance TBC, P=Primary, S=Secondary)

P1: Sea Ice Concentration ($\leq 5 \text{ km}, 5\%$)

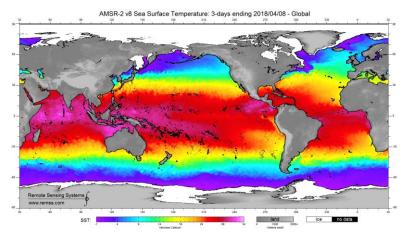

P2: Sea Surface Temperature (10 km, ~0.2 K)

- S: Sea Ice Drift ($\leq 25 \text{ km}$, 3 cm/s)
- S: Thin Sea Ice Thickness (~40 km, 10%)
- S: Snow on Sea Ice
- S: Snow Water Equivalent
- S: Sea Surface Salinity (~40 km)
- S: Ice Type ($\leq 5 \text{ km}$)
- S: Extreme Wind

Additional tertiary products (eg. global soil moisture, water vapour, precipitation rate...)

ESA UNCLASSIFIED - For Official Use

FMI participates the on-going Phase C studies. CIMR will be a major breakthrough for SWE retrieval! ~5km spatial resolution


100

90

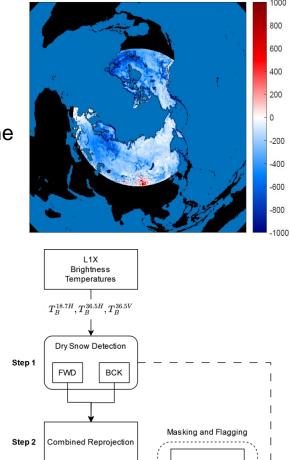
70

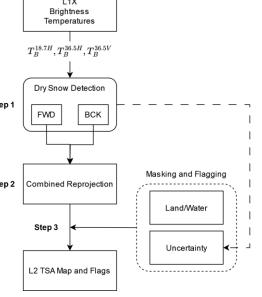
60

50

*

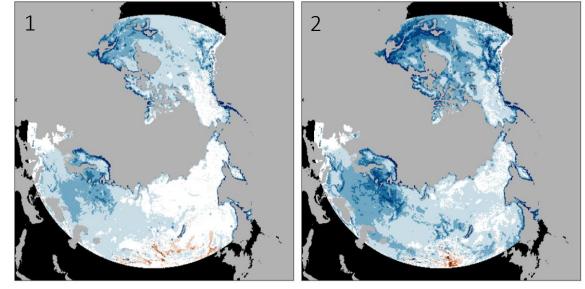
Short intro to ESA CIMR L2PAD algorithm R&D


- The CIMR L2PAD algorithm R&D activity will gather state-of-the-art expertise on all the 20+ L2 products to be covered in ESA's L2 G/S (Polar Ocean and Land).
- CIMR L2PAD builds upon past and on-going CIMR studies including CIMR MRC, Apps, SCEPS, MACRAD, and DEVALGO.
- In L2PAD, we continue our focus on Open Source Science (open ATBDs, and open implementation). Algorithms & source codes published on github and as Jupiter Notebooks
- FMI is developing the retrieval algorithms for terrestrial cryosphere:
 - Soil Freeze/Thaw state (Soil F/T)
 - Terrestrial Snow Area (TSA)
 - Snow Water Equivalent (SWE)



Terrestrial Snow Area (algorithm)

- Several existing algorithm available for detection of snow cover, evaluated recently by FMI (Zschenderlein et al. 2023, RSE)
- Typical snow detection approaches utilize 18.7 & 36.5 GHz (+ 89 GHz)
- Baseline algorithm selected for CIMR: EUMETSAT H SAF (H11) dry snow detection approach (Pulliainen et al., 2010) based on Hall et al. (2002) uses Ku and Ka-band (shows the best global performance for CIMR frequencies)
 - Approach by Pulliainen et al. (2010):
 - Introduces updated empirical thresholds, based on approach by Hall et al. (2002)
 - Operational for Europe in EUMETSAT H SAF H11 Snow Status (dry/wet) Product •
 - Validated for Northern Hemisphere •
 - H-pol TBs sensitive to snow stratigraphy \rightarrow snow layering as indicator for snow presence
 - V-pol TBs sensitive to bulk snow properties
 - \rightarrow snow water equivalent retrieval

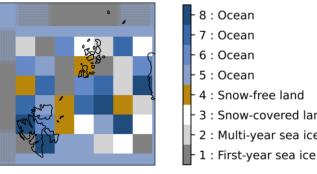


TSA R&D: Algorithm Comparison

- Long-term comparison of 6 different dry snow detection algorithms
 - Seasonal snow cover (Sep-Feb) above 40°N
 - In situ snow depth data: 30 years (see table)
 - NOAA IMS snow maps: 10 years (see figure)
- Tendency to underestimate snow area
 - Vegetation, snow wetness, shallow snow
 - Discrimination between scattering sources
- TSA impacts the SWE retrieval performance →
 Improved TSA alg. leads to improved SWE retrievals!

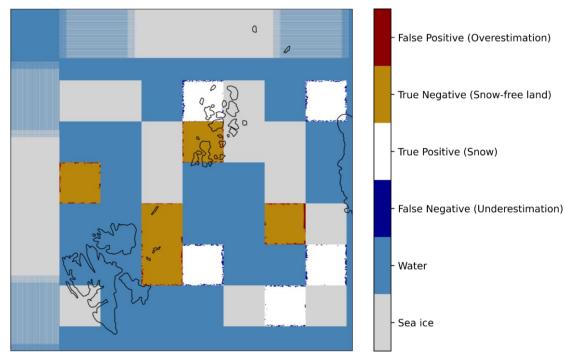
Underestimation					(Overe	estim	ation		
	1									
-1000	-800	-600	-400	-200	0	200	400	600	800	1000
Difference (days)										

	SSM/I—SSMIS (1987—2017)	Accuracy
	Grody and Basist (1996) ¹	82%
H SAF	Pulliainen et al. (2010) ²	79 %



Zschenderlein et al. (2023), RSE

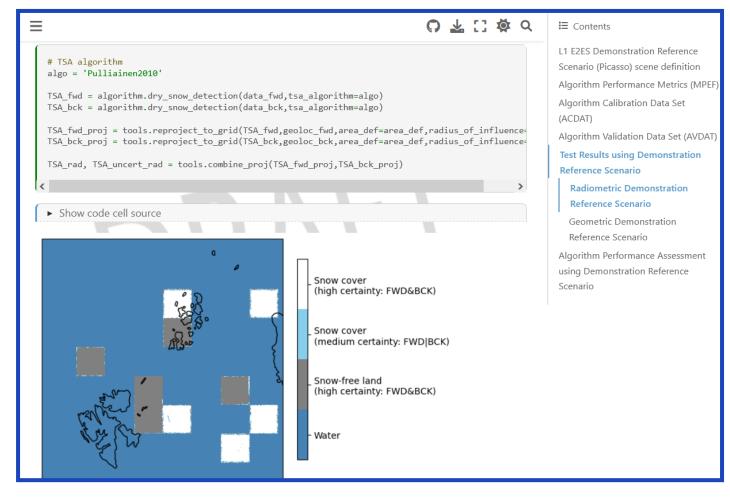
TSA - Algorithm Performance Assessment (CIMR test card)


Radiometric Reference Scenario

Accuracy	95.99%
True positive rate	95.59%
True negative rate	96.38%

4 : Snow-free land 3 : Snow-covered land 2 : Multi-year sea ice

- Choice of resampling introduces about ±3% uncertainty
- **Optimistic results:** simulation only of established snowpack and snow-free ground
- Tendency to underestimate (higher true negative rate)
- Land-water boundaries challenging \rightarrow Water spill-over corrections needed



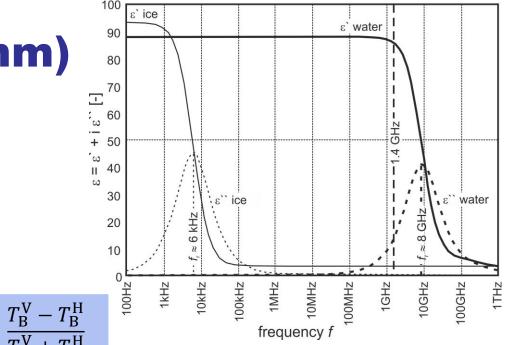
Terrestrial Snow Area

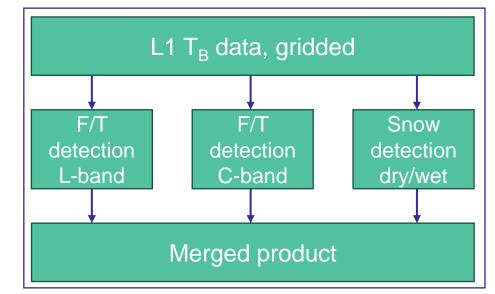
jupyter {book}

Work on CIMR TSA codebase / ATBD (JupyterBook) / JupyterNotebooks:

- Prototype of Python Codebase
- Jupyter Book ATBD
- Notebooks for Algorithm Evaluation and Demonstration
- \rightarrow transferred to CIMR L2PAD GitHub
- NetCDF file as output containing TSA variables:
 - TSA
 - Uncertainty Flag
 - Status Flag

Soil Freeze/Thaw (algorithm)


The core of the algorithm uses L-band channel, gridded data


- The algorithm is based on high contrast in permittivity between liquid water and ice
- Snow and vegetation affect the L-band the least
- The heritage algorithm from SMOS and SMAP freeze and thaw (Rautiainen et al. 2016; Derksen et al. 2017):
 - a) Normalised polarisation ratio (NPR)
 - b) Threshold detection, thresholds in relation to the pre-defined frozen and thawed soil references (pixel-wise reference)

NPR =

c) Categorized soil state – at a minimum, 'frozen' and 'thawed' states, with a possible third state, e.g., 'partially frozen/thawed.'

CIMR F/T will include other channels to improve the spatial resolution and to consider the effects of snow cover.

SMOS Freeze and Thaw Processing and Dissemination Service

Official SMOS satellite product developed at FMI after launch

Operational, one day latency

Spatial coverage: Northern Hemisphere, gridded to EASE-2 polar projection.

Spatial resolution: 25km x 25km

Temporal coverage: from July 2010 onwards

Algorithm based on threshold detection approach

Empirically defined reference signatures for frozen and thawed states

Soil state estimated in three binary levels:

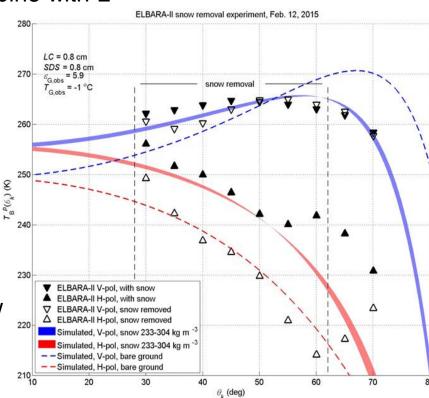
Soil Status from SMOS

Product web page: http://nsdc.fmi.fi/services/SMOSService/

Data download: <u>ftp://litdb.fmi.fi/outgoing/SMOS-FTService/</u>

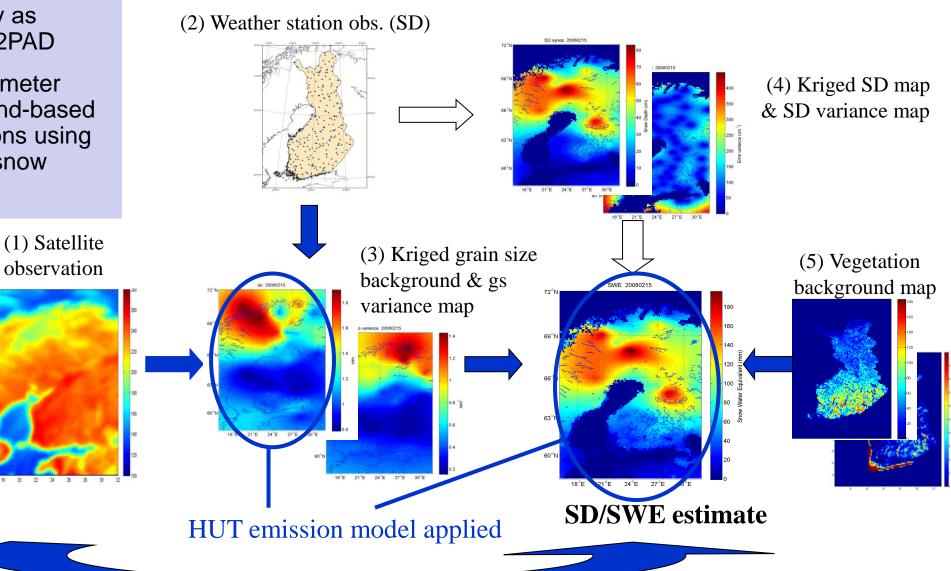
Most challenging targets:

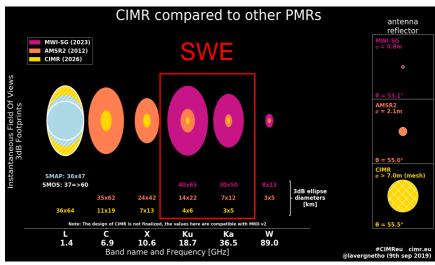
- Dry summer climate
- Barren areas
- Mountains
- Heterogeneous land covers and/or soil types => soil freezing and thawing may vary a lot within the large pixel.

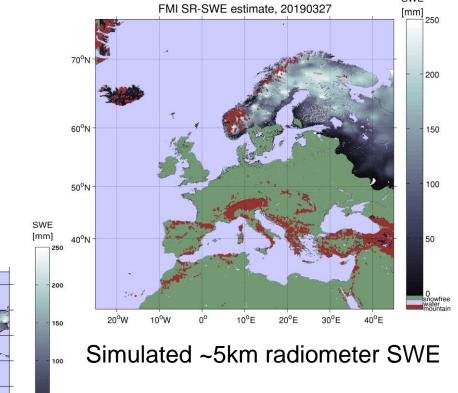

Best performance on cold high latitude areas with moist autumn conditions.

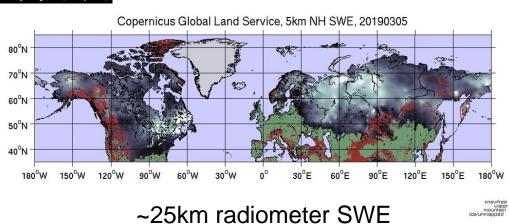
Soil Freeze/Thaw, CIMR added value

C-band: The landscape Freeze/Thaw state is detected using a similar algorithm.

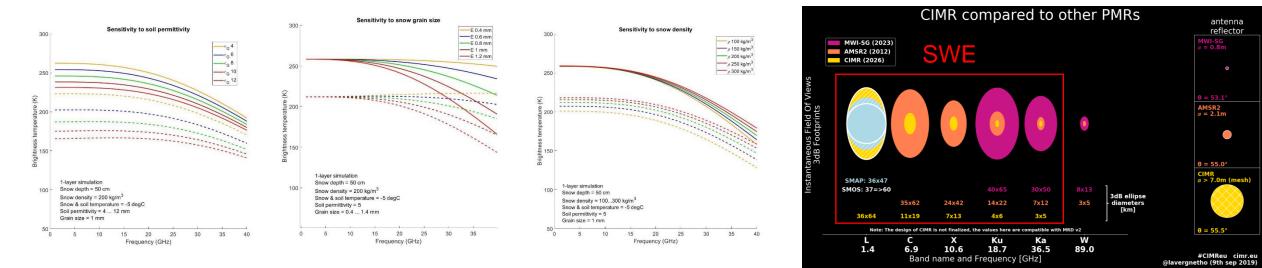

- Better spatial resolution; however, the observed signal is largely only from the surface of the target.
- To be tested if any added value can be achieved and how to combine with Lband
- Snow affects the L-band through refraction and impedance matching. (Schwank et al. 2015; Lemmetyinen et al. 2016)
 - At 50-55°, the effect on V-pol is negligible but significant on H-pol.
 - Dry snowpack changes NPR in a similar way to soil freezing.
 - => Synergy with CIMR TSA to detect snow cover
- Wet snow cover can block even the L-band signal.
 - Combined use with higher frequency channels to detect wet snow
 - CIMR will have improved RFI mitigation (at sensor level)


Snow Water Equivalent (algorithm)

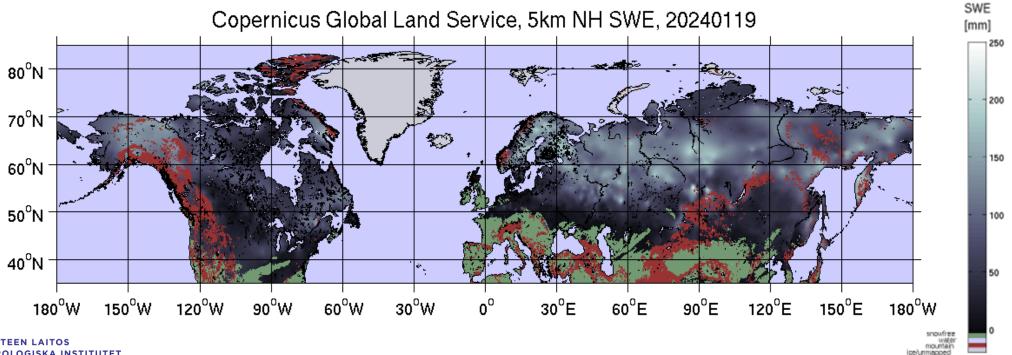

- "GlobSnow" methodology as starting point for CIMR L2PAD
- Passive microwave radiometer data combined with ground-based synoptic snow observations using the semi-empirical HUT snow emission model
- Ka/Ku band
- Coarse resolution
- Non-mountainous
- Terrestrial domain
- CIMR L2PAD R&D: satellite-only retrieval?

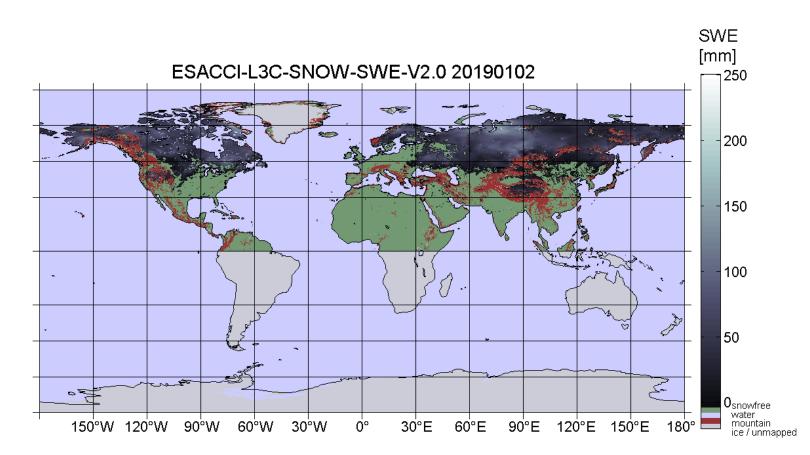

SWE retrieval with CIMR - spatial resolution

- Current SWE retrieval applies SSMIS data with ~25km spatial resolution
- CIMR will be a game changer with ~5km spatial resolution (Ku/Ka bands)!


SWE

SWE retrieval with CIMR - frequencies


- Current SWE retrieval applies Ku & Ka-band data
- The goal is to apply full range of CIMR frequencies for SWE retrieval, some potential approaches:
 - L- & C-band data utilized to estimate ground characteristics (earlier studies done with SMOS data)
 - X- to Ka-band data utilized to estimate/constrain snow density and microstructure (various approaches possible)
 - -> this additional information can be used with the existing "GlobSnow" SWE retrieval framework


Snow Water Equivalent (Copernicus Land Monitoring Service + C3S coming)

- Copernicus Global Land service Daily Northern Hemisphere SWE (5 km resolution)
- PMW retrievals augmented using optical EO-data & NOAA IMS snow mask
- 0.05° (~5km) NH lat/lon grid, daily SWE product (super-sampled from coarse resolution PMW data)
- Mountains, glaciers and icesheets masked out (snow on land)

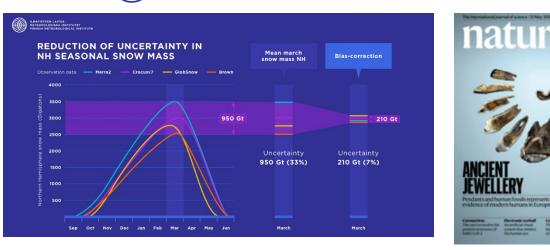
ESA Snow CCI – v3.0 SWE Climate Data Record

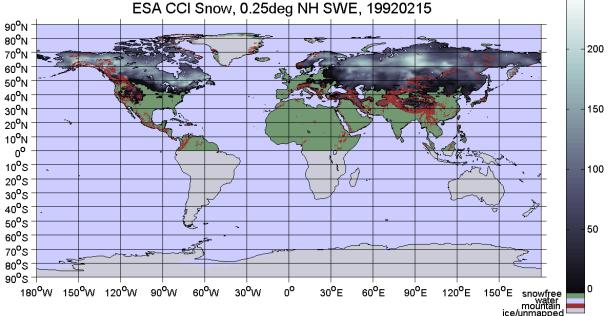
- Climate Data Record of Snow variable:
 - Snow water equivalent (SWE)
 - Uncertainty estimate (STD of SWE estimate)
 - Retrieval algorithm:
 - Takala et al. 2011
 - Luojus et al. 2021
 - Venäläinen et al. 2023
 - Zschenderlein et al. 2023
- Time series: January 1979 June 2022
- Spatial:
 - Coverage: Northern Hemisphere
 - Grid size: 0.10°
 - Projection: Geographical (lat/lon)
 - Datum: WGS 84
- Temporal:
 - Resolution: 1 day
 - Aggregation: Monthly (+ bias correction) Pulliainen et al. 2020 Nature appr.
- File:
 - Representation: 32 bit float (SWE: 0-500 mm)
 - Metadata: Land/sea mask, SWE uncertainty
 - Format: NetCDF4, CF-v1.9

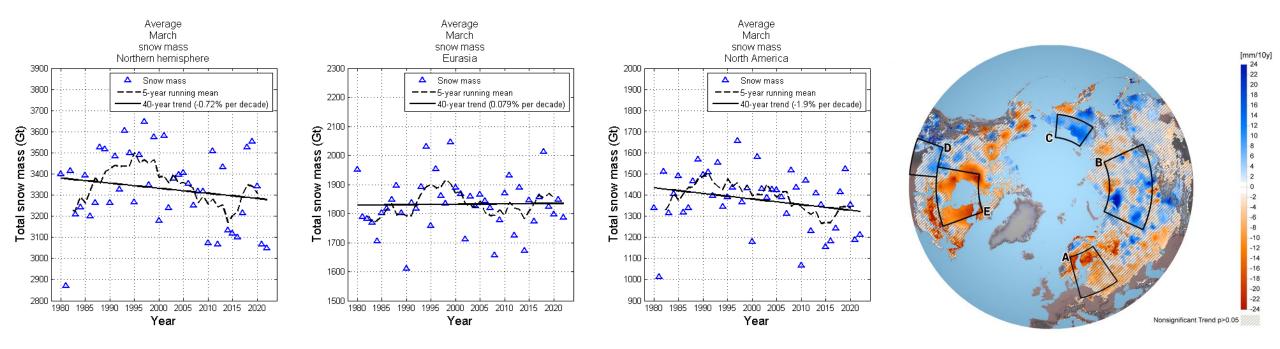
SWE product (CDR) will be added to C3S in 2025!

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

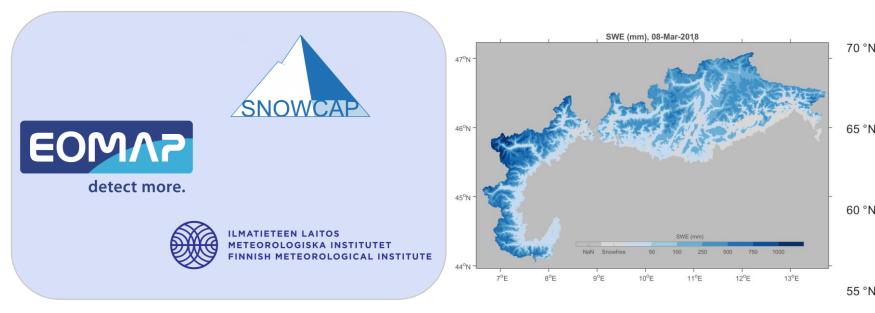
Environment and Climate Change Canada

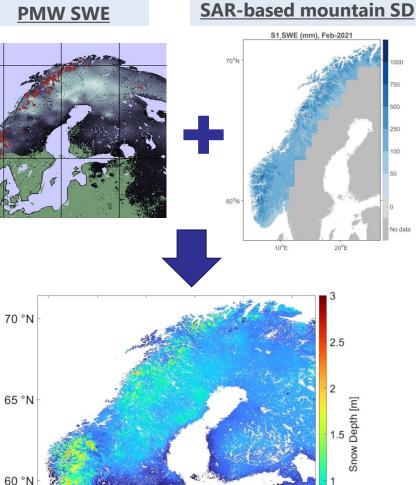

ESA Snow CCI - SWE climate data record Basis for a recent 'Nature' snow mass reconstruction


- Snow water equivalent (SWE) CDR
 - January 1979 May 2023
 - Northern Hemisphere 0.25°/0.10° (lat/lon)
 - Daily & monthly products
- Passive microwave radiometer data combined with ground-based snow observations
- Most accurate reconstruction of the satelliteera snow mass:
 - Pulliainen et al. 2020 Nature
- Large regional variations in NH snow mass!
- <u>CIMR</u> is crucial to extend the long-term climate data record


Environment and Climate Change Canada

ESA Snow CCI, average March snow mass on northern hemisphere 1980 – 2022


- Regional differences are strong, Negligible overall trend in Eurasia, Declining trend in North America
- Overall -> NH snow mass shows a slightly decreasing trend



ESA SnowPower demo project

- ESA demonstration project (2024-2025, ESA BASS progamme)
 utilization of SAR-based SD/SWE estimates for hydropower optimization
- Project investigates the potential to combine PMW & SAR-based snow retrievals for mountains & to operationalize the methodology
- Sentinel-1 based SD/SWE production system runs operationally for the Alps!
- Demo project with an **active end user interaction!**

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Merged PMW + SAR SWE

20 °E

10 °E

0.5

30 °E

- The CIMR L2PAD project works on developing the L2 retrieval algorithms and G/S processors for the upcoming CIMR mission (launch ~2029)
- L2PAD has a strong focus on Open Source Science. ATBDs, algorithms & source codes published on github and as Jupiter Notebooks
- FMI is developing the retrieval algorithms for terrestrial cryosphere:
 - Soil Freeze/Thaw state (Soil F/T)
 - Terrestrial Snow Area (TSA)
 - Snow Water Equivalent (SWE)

Key result in observed NH snow mass trends (ESA CCI results):

 We can observer a slightly decreasing trend for March NH Snow mass for 1980-2022, driven by changes in North America

