

Consiglio Nazionale delle Ricerche

Investigating the NH₃ Daily Cycle over SE Asia Using Combined IASI and CrIS Satellite Observations

NATURAL ENVIRONMENT RESEARCH COUNCI

·eesa

Adriana lorga^{1,2} (ai184@le.ac.uk), Jeremy J. Harrison^{1,2}, David P. Moore^{1,2}

1. The Threat: Big Agriculture and Ecological Collapse

- The agricultural sector emits NH₃ into the atmosphere that contributes to environmental degradation (soil, water, air) and respiratory diseases
- Largest NH₃ hotspots: agricultural areas in South and East Asia
- NH₃ concentrations are expected to rise with average global surface temperatures due to climate change

2. The Challenge: Rapid Changes and Sparse Measurements

- NH₃ is difficult to monitor due to its short atmospheric lifetime (a few hours)
- Ground observations are sparse and not many networks monitor NH₃ regularly
 IR satellite observations require large thermal contrast near the surface for a better NH₃ signal

- **3. The Solution:** Combined Global Satellite Observations with ULIRS and CRAFT (optimal estimation based retrievals)
- The University of Leicester IASI Retrieval Scheme (ULIRS) and the CrIS Algorithm For Trace gases (CRAFT) were used to perform NH₃ retrievals.
- A Fast Detection method was applied (so far only for IASI): the NH₃ a-priori profile is scaled depending on the pollution level, day/night and season.
- A scaling factor x is used in the Fast Detection method for the calculation of NH₃
- x is retrieved using a one-step linear process:

 $\boldsymbol{x} = \left(\boldsymbol{K}^T \, \boldsymbol{S}_y^{-1} \boldsymbol{K} \right)^{-1} \boldsymbol{K}^T \, \boldsymbol{S}_y^{-1} (\, y - \bar{y} \,)$

Fig.1 Comparison between the NH_3 index from the Fast Detection Scheme and the retrieved NH_3 total column from IASI shows a good spatial correlation for both day and night time observations. The high negative NH_3 index observed at night time arises due to a temperature inversion between the surface and the atmospheric layer where NH_3 concentrations peak (negative thermal contrast).

4. IASI and CrIS Satellite Observations of NH₃

5. The NH₃ Daily Cycle over South East Asia

 IASI and CrIS satellite observations were performed between 25th-31st
 The NH₃ daily cycle was studied over the Indo-Gangetic Plain in India January and 4th-10th April 2022 over South East Asia.
 and the North China Plain over 1 week during January and April 2022.

The different overpass times 9:30 AM/PM for IASI and 1:30 AM/PM for CrIS allow for the investigation of the NH₃ daily cycle. Studying the NH₃ diurnal cycle provides valuable information on its sources, surface exchange, deposition and transport processes, and the impact on these by weather and surface conditions; all these are crucial for improving atmospheric models.

and the North China Plain over 1 week during January and April 2022.
Large variations in the NH₃ total column between day and night time observations were found for the daily cycle in spring. There is a larger thermal contrast during the day, when the surface temperature is warmer than the atmosphere. Rising temperatures also facilitate the production of NH₃ from soils. The NH₃ concentrations peak around afternoon (1:30 PM CrIS overpass time).

- Fig.3 First results of the NH_3 daily cycles over India (23-27°N, 80-87 °E) and Beijing (38-38.5 °N, 115-115.5°E) during April 2022.
- For the winter (not shown), the NH₃ total column varies less significantly between day and night. This is because the thermal

Fig.2 NH₃ total column concentrations from IASI and CrIS observations over SE Asia.

contrast during winter is lower and the production of NH₃ is also at its lowest.

 Background CrIS night time NH₃ concentrations seem very high during both spring and winter time. The next step is to incorporate the Fast Detection method into the CRAFT retrieval scheme for CrIS.

6. References

Clarisse L. et al (2009), Nature Geoscience, 479-483; Dammers E. et al (2019), Atmos. Chem. Phys., 12261–12293; Erisman, J. W. et al (2007), Environ. Pollut., 150, 140– 149; Krupa S. V. et al (2003), Environ. Pollut., 124, 179-221; Van Damme M. et al (2021), Environ. Res. Lett., 16 055017; Walker J. C. et al. (2012), *J. Geophys. Res.*, 117, D00U16; Wu Y. et al (2016) Environmental Pollution 218, 86-94; Xu, R. T. et al (2018), GeoHealth, 2, 40–53; Zhao M. et al (2016), Aerosol and Air Quality Research, 16,: 1378–1389.

ATMOS 2024 | 1-5 July 2024 | Bologna, Italy