The Time-Frequency Analysis (TFA) Toolbox: a Versatile Processing Tool for the Recognition of Magnetospheric and Ionospheric Signals in Swarm Time Series

G. Balasis¹, C. Papadimitriou¹,², A. Z. Boutsis¹,², A. Antonopoulou¹,², O. Giannakis¹, A. Smith³

1. Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Greece; 2. Department of Physics, National and Kapodistrian University of Athens, Greece; 3. School of GeoSciences, University of Edinburgh, UK

THE TIME – FREQUENCY ANALYSIS TOOL (ORIGINAL VERSION)

The original Time Frequency Analysis (TFA) tool was a MATLAB application that was used to perform wavelet analysis on time series of magnetonic and electric field data from the Swarm mission (Balasis et al., EPS 2013). Parts of the series that exhibited significant wave power were then classified into four categories of either actual “Wave Events” for true ULF waves, “Plasma Instabilities” for pulsations that were attributed to the satellite passing through turbulent plasma flux tubes, “False Positives” for wavelet signatures that were caused by spikes or data gaps in the data and were thus completely artificial and “Background” for minimal or no wave activity.

WAVE DETECTION AND INDEX

The tool not only performs the wavelet analysis, but also checks the parts of the signal that exhibit significant wave power against a series of criteria, in order to remove wave signatures that are caused by plasma instabilities and artificial spikes or other outliers. If the signal passes all tests, it is considered a true wave signal and by summing its power in all frequencies of the particular frequency range in which it belongs, the tool produces a Wave Index (Papadimitriou et al., ANGEO 2018).

DEMO AND EXAMPLES

import time, datetime, tfa, palitems, scipy, numpy

data = tfa.get_magnetosonic_dataset(2015, 3, 14)
data = data['P1']

from SwarmPAL.io import create_paldata
from SwarmPAL.toolboxes import TFA

dataset = create_paldata()

collection = dataset.collection
magnetic = collection.data

eft = tfa.get_magnetosonic_dataset(2015, 3, 14)
eft = eft['P1']

data = create_paldata()

WAVELET SIGNATURES OF THE 4 CLASSES

The graphical interface of the TFA tool

USER INTERFACE

From swarmpal.io import create_paldata
From swarmpal.toolboxes import tfa

data = tfa.get_magnetosonic_dataset(2015, 3, 14)
data = data['P1']

data, collection, magnetic = tfa.set_config(dataset=dataset, collection=collection, magnetic=magnetic)

DATA IMPORT

from SwarmPAL.io import create_paldata
from SwarmPAL.toolboxes import tfa

dataset = create_paldata()
collection = dataset.collection
magnetic = collection.data

eft = tfa.get_magnetosonic_dataset(2015, 3, 14)
eft = eft['P1']

import time, datetime, tfa, palitems, scipy, numpy

data = tfa.get_magnetosonic_dataset(2015, 3, 14)
data = data['P1']

from SwarmPAL.io import create_paldata
from SwarmPAL.toolboxes import tfa

dataset = create_paldata()
collection = dataset.collection
magnetic = collection.data

eft = tfa.get_magnetosonic_dataset(2015, 3, 14)
eft = eft['P1']

DATA IMPORT

WAVELET SIGNATURES OF THE 4 CLASSES

The graphical interface of the TFA tool

USER INTERFACE

From swarmpal.io import create_paldata
From swarmpal.toolboxes import tfa

dataset = tfa.get_magnetosonic_dataset(2015, 3, 14)
data = data['P1']

from SwarmPAL.io import create_paldata
from SwarmPAL.toolboxes import tfa

dataset = create_paldata()
collection = dataset.collection
magnetic = collection.data

eft = tfa.get_magnetosonic_dataset(2015, 3, 14)
eft = eft['P1']


THE NEW TFA TOOLBOX

The new TFA toolbox is a part of the SwarmPAL family of products. As such it has access to a wide range of data from the Swarm mission, as well as from other sources

Wavelet signatures of the 4 classes

Visualization of the Wavelet Power Spectrum of the 1Hz Magnetic Field data from Swarm-A for the 4th track (half-orbit) of the satellite at the 14th of March, 2015.

Merging the various plots of the TFA tool in one figure can produce outputs such as these, with the filtered magnetic field time series (top), the wavelet power spectrum (middle) and the Magnetic Latitude and MLT series (bottom).