

SLSTR Performance

Dave Smith, Caroline Cox, Mireya Etxaluze, Connor McGurk, Ed Polehampton and Melina Zemplia

STFC RAL Space

© ACRI-ST | OPT-MPC – 2022

VIS/SWIR Channels

Geolocation

RAL Space © ACRI-ST | OPT-MPC-2022

VIS/SWIR Channels

Geolocation

© ACRI-ST | OPT-MPC – 2022

RAL Space

© ACRI-ST | OPT-MPC-2022

Detector Temperatures

- IR detector temperatures maintained between 84 K and 89 K
- Periodic de-contamination is needed to remove water ice from cold surfaces
- SLSTR-A FPA Cooler set-point increased by 1K in July 2018 and 1K in Oct 2020 to increase running time between decontaminations
- SLSTR-B FPA Cooler set-point increased by 2K in March 2020
- 'Forced' decontaminations in 2022 due to instrument anomalies

Black-Body Performance

Blackbody temperatures have a seasonal cycle on top of the daily/orbital temperature cycles. Heated BB remains below 305K limit necessary for S7 calibration.

Temperature gradients consistent with pre-launch values for SLSTR-A and B

© ACRI-ST | OPT-MPC-2022

BB Temperatures have decreased slightly since reduction in heater power

SLSTR-A Part-1 SLSTR-B Part-1 ^{0.3} ЕПИ 57 № <u>С</u>\$8 № <u>С</u>\$9 № <u>С</u>\$7 № <u>А</u>\$8 № <u>С</u>\$9 № 57 Na 258 Na 559 Na 57 Ob 58 Ob 59 Ob 0.2 0.2 BT Diff (K) Diff (K) -0.1 -0.1 ╞╷╷╷╷╷╷╎╷╷╷╷╷╷╷╎╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷ lan-22 Jan-18 lan-19 lan-20 SLSTR-A Part-2 SLSTR-B Part-2 0.3 57 Na 458 Na 59 Na 57 Ob 458 Ob 59 Ob 0.2 0.2 Diff (K) Diff (K) BT -0.1 <u>Farmanlananalananalananalananalananalanana</u> lan-16 lan-17 lan-21 lan-22

BB Cross-Over Test Results

Once a year we perform a cross-over test where the heated BB is swapped and the signals are compared when the temperatures cross-over.

We estimate the effective temperature error by comparing the detector counts at the cross-over point

$$\Delta T = \Delta C \frac{\partial T}{\partial C}$$

Important to note the result is an indication of the BT radiometric uncertainty under certain conditions.

I.e. a combination of thermometer calibration drift, emissivity, thermal gradients.

RAL Space © ACRI-ST | OPT-MPC – 2022 OPT-MPC

Science and

Technology

Facilities Council

RI

RAL Space

© ACRI-ST | OPT-MPC-2022

IR Channels Noise

Radiometric noise levels for the TIR channels have remained stable throughout at pre-launch values.

NEDT for the S8 and S9 channels are below 20mK. For SLSTR-B there appears to be a small but gradual increase over time.

S3B F1 shows periodic increases in noise – possibly due to motional chopping

RAL Space © ACRI-ST | OPT-MPC – 2022

Seasonal variations at low scene temperatures due to BB temperature variations.

© ACRI-ST | OPT-MPC-2022

SLSTR detector temperatures vary due to decontaminations as well as changes to cold finger temperatures

VIS/SWIR Channels

Geolocation

RAL Space © ACRI-ST | OPT-MPC-2022

VIS/SWIR Radiometric Calibration – Current Status

 Verification of the S1-S6 channel calibration is primarily based on analysis of PICS sites, but complemented by Lunar and Sun-glint methods

Nadir View					
	S1	S2	\$3	S 5	S6
Correction	0.97	0.98	0.98	1.11	1.13
Uncertainty	0.03	0.02	0.02	0.02	0.02
Input	UoAz	UoAz	UoAz	UoAz	UoAz
Analysis	Rayference	MPC (RAL)	MPC (RAL)	MPC (RAL)	MPC (RAL)
	CNES	Rayference	Rayference	Rayference	Rayference
		CNES	CNES	CNES	CNES

Oblique View

-- ---

	S1	S2	\$3	S5	S6
Correction	0.94	0.95	0.95	1.04	1.07
Uncertainty	0.05	0.03	0.03	0.03	0.05
Input	Rayference	MPC (RAL)	MPC (RAL)	MPC (RAL)	Rayference
Analysis	CNES	Rayference	Rayference	Rayference	CNES
		CNES	CNES	CNES	

Note: Uncertainty estimates are at k=1.

© ACRI-ST | OPT-MPC - 2022

RAL Space

Users are advised to adopt the correction factors for the radiometric calibration of channels S1-S6

Long Term Trends - Nadir

- The long-term stability of the VIS/SWIR channels is determined using comparisons over PICS sites.
- Long term stability of sites is assumed to be <1% based on historical analysis of sites.
- Seasonal variations are accounted for.
- All channels show good long term stability.
- No corrections applied yet due to operational constraints
- Good consistency between SLSTR-A and B
- Small drift observed for S1-S3 observed over mission lifetime.

	S3A	S3B
S1	0.24% yr ⁻¹	0.17% yr⁻¹
S2	0.09% yr ⁻¹	0.11% yr ⁻¹
S3	0.28% yr ⁻¹	0.08% yr ⁻¹

Yearly Drift

Year-by-year breakdown of the drift in % since the start of the mission

SLSTR-A

	S	1	S	2	S	3	S	5a	S	5b	S	6a	Se	5b
Year	Na	Ob	Na	Ob	Na	Ob	Na	Ob	Na	Ob	Na	Ob	Na	Ob
2017	0.3	0.0	0.2	0.3	0.5	0.5	0.1	0.0	0.2	0.1	0.1	-	0.0	-
2018	0.7	1.0	0.2	0.3	0.8	0.9	0.0	-0.1	0.0	-0.1	-0.6	-	-0.7	-
2019	0.9	0.5	0.4	0.4	1.1	1.2	0.0	0.0	0.0	0.0	-0.2	-	-0.3	-
2020	1.1	0.7	0.6	0.5	1.4	1.6	0.0	-0.1	0.0	-0.1	-0.2	-	-0.3	-
2021	1.4	0.9	0.6	0.6	1.6	1.8	0.0	0.0	0.0	0.0	-0.2	-	-0.3	-
2022	2.2	1.3	1.1	0.7	2.2	2.3	0.2	0.0	0.2	0.0	0.7	-	0.6	-

SLSTR-B

	S	1	S	2	S	3	S	5a	S	5b	S	6a	Se	5b
Year	Na	Ob	Na	Ob	Na	Ob	Na	Ob	Na	Ob	Na	Ob	Na	Ob
2019	0.7	-1.2	0.5	-0.3	0.3	0.0	0.2	-0.1	0.3	-1.1	-	-	-	-
2020	0.9	-0.8	0.5	-0.2	0.5	0.4	0.3	-0.3	0.3	-1.3	-0.2	-	-0.2	-
2021	1.3	-0.4	0.7	0.2	0.8	0.7	0.3	-0.3	0.2	-1.3	0.0	-	-0.1	-
2022	2.1	-0.5	1.2	-0.1	1.5	1.2	0.7	-0.2	0.6	-1.2	1.0	-	0.9	-

Reference year for S6 of S3B is 2019

VIS/SWIR Channels

Geolocation

RAL Space © ACRI-ST | OPT-MPC-2022

Geometric Calibration Status

Jan-21

Jan-21

Jan-21

Jul-21

Jul-21

Jul-21

Jan-22

Jan-22

Jan-22

Jul-22

Jul-22

Jul-22

Jan-23

Jan-23

Jan-23

Jan-23

SLSTR-A Mission Averages						
Na Across Track	-0.044 km					
Na Along Track	-0.011 km					
Ob Across Track	-0.126 km					
Ob Along Track	0.009 km					

SLSTR-B Mission Averages								
Na Across Track	-0.052 km							
Na Along Track	-0.017 km							
Ob Across Track	-0.082 km							
Ob Along Track	0.015 km							

Geometric calibration assessed against ground control points using S3GEOCAL tool Note: Plots only cover period for monitoring performed by MPC – hence early mission data not included

- GeoCal tool provides absolute calibration of SLSTR wrt. S3 channel
- Interband co-registration of all channels is based on CCDB assumed to be correct.
- CCDB provides detector line-of-sight based on static alignment tests derived from pre-launch calibration measurements. Does not account for different grid resolutions, scanning effects, on-orbit variations (assumed to be negligible)
- Earlier analysis of L1 images showed an offset of S7 vs S8/S9.
- Most likely due to timing effect.
- Which channel is correct with respect to the VIS/SWIR channels (if any)?

TIR Co-Registration

S7 vs S8 Positional offsets were measured for S3A and S3B during the Tandem Phase

Co-registration analysis between S7 and S8/S9 is straightforward

Same image grid and good correlation between bands.

To perform co-registration analysis between TIR and VIS/SWIR channels, the VIS/SWIR radiance images must be remapped from the 0.5 km grid to the IR 1km.

✤ 0.5 km grid was triangulated into IR 1km grid

The TIR vs VIS co-registration is performed between channels S7 and S5

 \$8/\$9 show very poor correlation wrt. VIS/SWIR channels so could not be done directly (i.e. radiometrically uncorrelated).

Co-registration analysis has been completed over every L1 product in 2021.

Full Earth coverage

© ACRI-ST | OPT-MPC-2022

Geolocation of TIR channels

Spatial distribution of all the positional offset measurement locations.

Co-registration of S5 wrt S7

S5 and S7 are well co-registered in across-track and along-track

© ACRI-ST | OPT-MPC – 2022

OPT-MPC

al Mission Perform

Co-registration of S8 wrt S7

- Results are consistent with earlier analysis of on LO data
- Co-registration of S8 vs S7 show a seasonal variation

© ACRI-ST | OPT-MPC-2022

S3VT#7 | ESRIN | 18-Oct-2022 20

TIR Geometric Calibration Summary

- S8/S9 wrt. S7
- ~130 metres in across track ~ 0 metres along-track

• S7 wrt. S5

- ~0 metres across-track, along-track shows seasonal variation bellow 50 meters
- Correlation factors and the number of positions in which the co-registration is measured vary seasonally
- Changes on the instrument temperatures
- S8/S9 wrt. VIS/SWIR
- By reference, we can infer a similar offset variation with S8/S9 wrt S5 and therefore S3.

