Multi-task deep learning from Sentinel-1 SAR: ship detection, classification and length estimation

C. Dechesne 1

S. Lefèvre $^2,\, \mathrm{R.}$ Vadaine $^3,\, \mathrm{G.}$ Hajduch $^3,\, \mathrm{R.}$ Fablet 1

IMT Atlantique – Lab-STICC, UMR CNRS 6285, Brest, FR
Univ. Bretagne Sud – IRISA, UMR CNRS 6074, Vannes, FR
Collecte Localisation Satellites, Brest, FR

BiDS 2019 19–21 February 2019

Outline

- **3** Framework
- **4** Results
- 6 Conclusion

Context

Context

Ship detection SAR and AIS Deep learning Objectives

Dataset

Framework

Results

Conclusion

The detection of inshore and offshore ships is an important issue:

- Monitoring fisheries,
- Managing maritime traffic,
- Ensuring safety of coast and sea.

In operational contexts, ship detection is traditionally performed by a human observer from **visual analysis** on remotely-sensed images. It is very **time consuming** and cannot be conducted at a very **large scale**.

SAR images

Context

Ship detection SAR and AIS Deep learning Objectives

Dataset

Framework

Results

Conclusion

Sentinel-1 SAR data provides regular, worldwide coverage.

Almost all coastal zones and shipping routes are covered by Interferometric Wide Swath Mode (IW), while Extra-Wide Swath Mode (EW) acquires data over open oceans, providing a **global coverage** for sea-oriented applications.

4/24

19–21 February 2019

BiDS 2019

AIS

Context

Ship detection SAR and AIS Deep learning Objectives

Dataset

Framework

Results

Conclusion

The automatic identification system (AIS) is an automatic tracking system that uses transponders on ships.

AIS provides meaningful and relevant information about ships (such as position, **type**, **length**, rate of turn, speed over ground, etc.)

■ 19−21 February 2019

Deep learning

Context

- Ship detection SAR and AIS Deep learning
- Objectives
- Dataset
- Framework
- Results
- Conclusion

Deep learning is considered as one of the major breakthrough related to big data and computer vision.

A Deep Neural Network:

- consists of multiple layers (such as convolution, pooling, fully connected and normalization layers),
- transforms original data (raw input) into higher semantics representation,
- can learn very complex functions.

Objectives

Context

Ship detection SAR and AIS Deep learning

Objectives

Dataset

Framework

Results

Conclusion

Employ the synergy of SAR and AIS in order to detect and characterize ships:

- Detect ships on SAR images.
- Estimate ship length from SAR images.
 - Could not be directly retrieved from ship footprint from SAR images.
- Classify ships from SAR images.

Context

Dataset

- Framework
- Results
- Conclusion

The dataset is composed 18,894 SAR images of size 400×400 obtained by coupling AIS information and SAR data:

- Each image is accompanied with the incidence angle
- \rightarrow cropping to reduce the size to 80×80 and preserve significant contextual information while reducing the amount of data to process.
 - 5 classes (Tanker Cargo Fishing Passenger Tug)
 - Unbalanced database (10,430 instances of Tanker and only 1,071 instances of Passenger)

 $\rightarrow\,$ data augmentation with translations and rotations.

Final dataset:

• Balanced dataset, 20,000 images 80×80 .

19–21 February 2019

Sébastien Lefèvre

Dataset

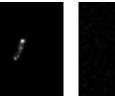
Dataset

Dataset

Framework

Results

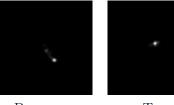
Conclusion



Tanker

Cargo

Fishing



Passenger

Tug

Framework

Context

Dataset

Framework

Results

Conclusion

The proposed multi-task framework is based on two stages inspired from the VGG framework:

- a first common part,
- three task-oriented branches for ship detection, classification and length estimation.

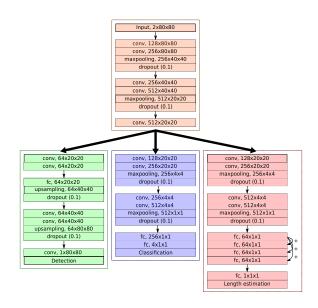
Context

Dataset

Framework

Results

Conclusion



Model

Loss function - detection

Context

Dataset

Framework

Results

Conclusion

Detection loss (binary cross-entropy):

$$L_{det} = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k \in I} (y_k \log(p(k)) + (1 - y_k) \log(1 - p(k)), (1)$$

with y_k : ground truth of ship presence (0 or 1) of pixel k and p(k) probability of ship presence of pixel k.

Allows to provide a probability map of ship presence.

■ 19−21 February 2019

Loss function - classification

Classification loss (categorical cross-entropy):

$$L_{class} = -\frac{1}{N} \sum_{n=1}^{N} \sum_{c=1}^{n_c} (y_{o,c} \log(p_{o,c})), \qquad (2)$$

Framework Results

Conclusion

with $y_{o,c}$ a binary indicator (0 or 1) if class label c is the correct classification for observation o and $p_{o,c}$ the probability for the observation o to belong to c.

Allows to provide the class probability for each input image.

Loss function - length estimation

Context

Dataset

Framework

Results

Conclusion

Length estimation loss (mean squared error):

$$L_{length} = \frac{1}{N} \sum_{n=1}^{N} (l_{pred} - l_{true})^2, \qquad (3)$$

with l_{pred} the predicted length and l_{true} the true length.

Allows to minimize the error of ship length.

14/24

Sébastien Lefèvre

19-21 February 2019

BiDS 2019

Loss function

The loss function for the network is:

$$L = L_{det} + L_{class} + L_{length}$$
(4)

- Framework Results
- Conclusion

- Each specific loss employed to design the loss of the whole network could have been weighted.
- $\rightarrow\,$ The range is not uniform among the different losses but it appears to have no effect on the optimization process.
 - Each specific loss is equally weighted.

Training

Context

Dataset

Framework

Results

Conclusion

Network trained on a PC with a single NVIDIA GTX 1080 Ti, an Intel Xeon W-2145 CPU 3.70GHz and 64GB RAM.

- Dataset splitted:
 - 16,000 samples for training,
 - 4,000 samples for testing.
- Training the model with 800 epochs and batches of 100 samples.
- Training takes about 9 hours.
- Testing takes less than a minute.

Detection results

Context

Dataset

Framework

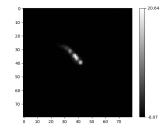
Results

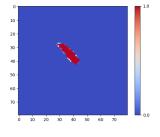
Detection

Classification Length estimation

Conclusion

In terms of detection, only a visual assessment has been performed.





SAR image

17/24

19–21 February 2019

BiDS 2019

Detection results

Context

Dataset

Framework

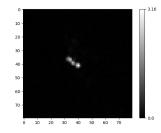
Results

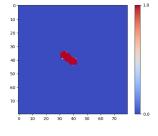
Detection

Classification Length estimation

Conclusion

In terms of detection, only a visual assessment has been performed.





SAR image

19–21 February 2019

BiDS 2019

Fr

Classification results - 4 classes

S	Confusion matrix					
Label	Tanker	Cargo	Fishing	Passenger	Precision	
Tanker	985	11	0	4	98.5	
Cargo	65	907	12	16	90.7	
Fishing	0	2	998	0	99.8	
Passenger	0	0	0	1000	100.0	
Recall	93.81	98.59	98.81	98.04		
	Accuracy metrics					
Label	Tanker	Cargo	Fishing	Passenger	Overall	
IoU	92.49	89.54	98.62	98.04	94.67	
F-Score	96.1	94.48	99.3	99.01	97.22	
Accuracy	98.0	97.35	99.65	99.5	97.25	
к	0.95	0.93	0.99	0.99	0.97	

We only report some light confusion for the Cargo class.

19/24

Classification results - 5 classes

	Confusion matrix						
DOLLECTE LOCALISATION SATELLITES	Label	Tanker	Cargo	Fishing	Passenger	Tug	Precision
	Tanker	771.0	28.0	0.0	1.0	0.0	96.38
Context	Cargo	60.0	732.0	3.0	3.0	2.0	91.5
Dataset	Fishing	0.0	1.0	799.0	0.0	0.0	99.88
Framework	Passenger	3.0	1.0	0.0	796.0	0.0	99.5
Results	Tug	0.0	0.0	0.0	0.0	800.0	100.0
Detection Classification	Recall	92.45	96.06	99.63	99.5	99.75	
Length estimation							

Comparison

Conclusion

Accuracy metrics						
Label	Tanker	Cargo	Fishing	Passenger	Tug	Overall
IoU	89.34	88.19	99.5	99.0	99.75	95.16
F-Score	94.37	93.73	99.75	99.5	99.88	97.44
Accuracy	97.7	97.55	99.9	99.8	99.95	97.45
к	0.93	0.92	1.0	0.99	1.0	0.97

We only report some light confusion for the Cargo class.

20/24

Length estimation results

Context

Dataset

Framework

Results

Detection

Classification

Length estimation

Comparison

Conclusion

The length estimation is well performed by our network:

- 4 classes: mean error: $4.65 \text{ m} \pm 8.55 \text{ m}$
- 5 classes: mean error: $1.93 \text{ m} \pm 8.8 \text{ m}$

The mean error is in both cases lower than the resolution of the image and the standard deviation is also very low.

Context

Dataset

Framework

Results

Detection

Classification

Length estimation

Comparison

Conclusion

Comparison with other networks

Length estimation - comparison with a MLP with one hidden layer having 128 hidden units.

	Our network	MLP
Mean error	$4.65\mathrm{m}\pm8.55\mathrm{m}$	$-7.5~\mathrm{m}\pm128~\mathrm{m}$

Classification - comparison with the MLP and a RCNN.

	Our network	MLP	RCNN
Overall $accuracy(\%)$	97.25	25.00	88.57

22/24

Conclusion

Context

Framework

Results

Conclusion

The ship detection has been widely investigated, a ship probability presence map has been proposed using a deep neural network.

The proposed framework has shown **very good results in terms of classification**. Some light confusion with the *Cargo* class was reported.

The length estimation achieves a **sub-pixel error and standard deviation**.

23/24

Multi-task deep learning from Sentinel-1 SAR: ship detection, classification and length estimation

C. Dechesne¹

S. Lefèvre $^2,\,\mathrm{R.}$ Vadaine $^3,\,\mathrm{G.}$ Hajduch $^3,\,\mathrm{R.}$ Fablet 1

IMT Atlantique – Lab-STICC, UMR CNRS 6285, Brest, FR
Univ. Bretagne Sud – IRISA, UMR CNRS 6074, Vannes, FR
³ Collecte Localisation Satellites, Brest, FR

Questions?

BiDS 2019 19–21 February 2019