CECMWF

Modelling Priority Areas for Improving Global School Access

A Geostatistical Machine Learning Approach

Abi Riley

UNICEF-ESA Research Intern PhD Student at Imperial College London a.riley21@imperial.ac.uk

Casper Fibæk, Kelsey Doerksen, Do-Hyung Kim, Alessandro Sebastiane, Rochelle Schneider

ECMWF

·eesa Φ-lab

MapConnectFinanceEmpower"Connecting every school, and every
community to the Internet"

Data unavailable

- No connectivity
- Moderate
- Good

The UNICEF-ESA Internship Project

Data Processing

Geocoding and validation of school locations

Combining datasets

from governments

and open sources

Processing other variable datasets, e.g. GHSL, nightlights, images Modelling the spread of schools

Linking to population

counts, land cover and

D urbanicity

Spatial modelling

Statistical analysis of results to identify key areas

Finding New Schools

eesa

Computer vision methods

High-resolution satellite

imagery

ECMWF

Modelling Resources Connectivity of Schools

Geographically-Aware Models

Data

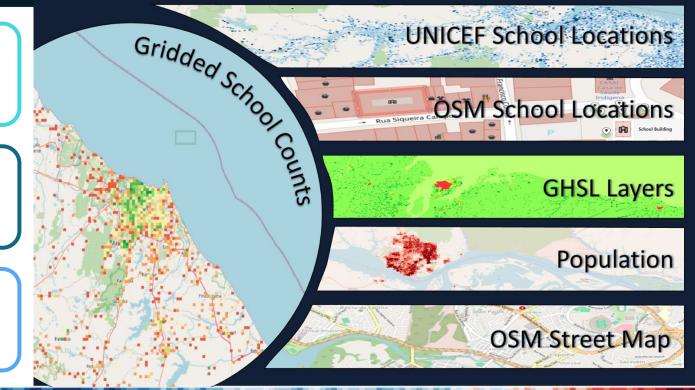
Schools Data:

- UNICEF, Gov, OSM sources
- Merging and validating

Gridded School Counts: - 1km and 10km grids - Counts and indicator

Covariates:

- GHSL settlement info
- Population and others...



Methods

Random Forest Classification for Gridded School Indicator Data

• Outputs: grid of predicted indicator variable, grid of predicted RF probability

Non-Spatial Random Forest Regression for Gridded School Count Data
Outputs: grid of predicted school counts

Additional Methods:

eest

- Variable selection

ECMWF

- Variable importance
- Interaction terms
- Spatial autocorrelation

Spatial Random Forest Regression for Gridded School Count Data

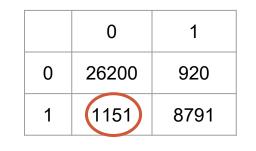
• Outputs: grid of predicted school counts

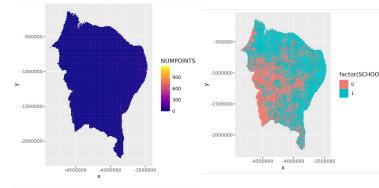
Case Study: North-East Brazil

School Indicator Model

- 1. Fit Random Forest classification model
- 2. Parameter tuning: grid search
- 3. Prediction
- 4. Identify false positives and get RF prediction probabilities

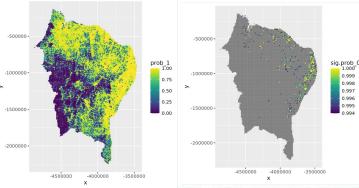
Accuracy: 0.9441 False Positive Rate: 3.11%





e

ECMWF

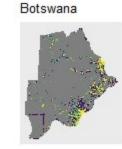


€ ECMWF • esa Φ-lab

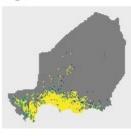
Case Study: Africa

School Indicator Model Probabilities

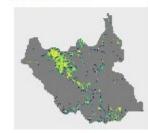
Example countries with top 15% of false positives



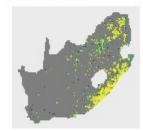
Niger



South Sudan



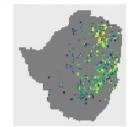
South Africa



level_85 0.25 0.50 0.75 1.00

Namibia

Zimbabwe



12°N

11°N

10°N ·

9°N -

8°N

7°N

6°N

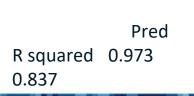
Fit

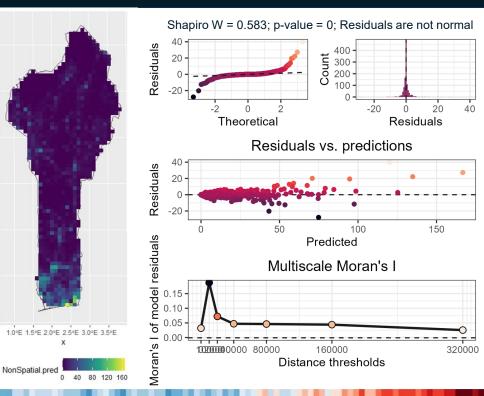
>

Case Study: Benin

Non-Spatial School Counts

- 1. Assess potential multicollinearity
- 2. Variable selection
- 3. Fit non-spatial Random Forest regression model
- 4. Parameter tuning
- 5. Cross-validation on spatial folds
- 6. Diagnostics of residuals





ECMWF

eesa

Case Study: Benin

Spatial School Counts

Spatial

Pred

0.627

Fit

0.973

R squared

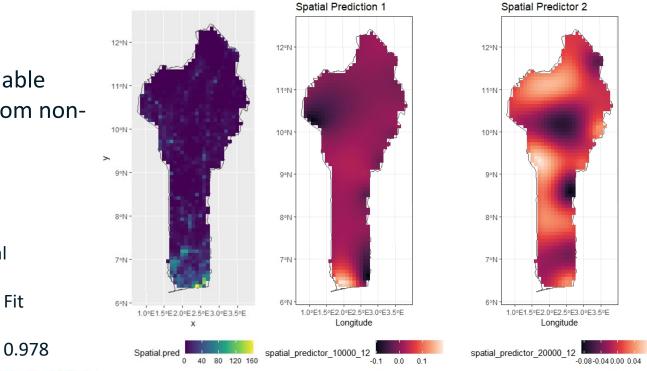
Motivated by and using variable selection and importance from nonspatial model

Non-Spatial

Fit

Pred

0.837



ECMWF

·eesa Φ-lab

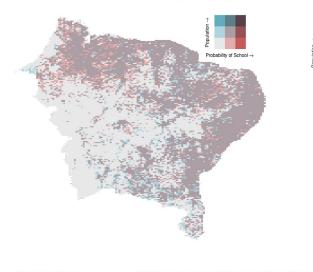
ECMWF

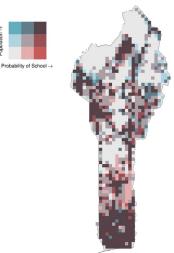
€esa Φ-lab

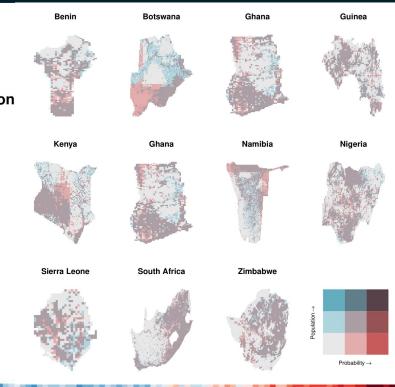
Identifying Priority Regions

Example: Balance between RF probability and population

NE Brazil School Probability vs Population Benin School Probability vs Population







Discussion

Conclusions

The use of low-resolution global satellite-derived data

Motivating more complex model approaches

Best performance and efficiency using Random Forest methods

Linking to Further Work

Priority areas to find new schools using high-resolution satellite imagery (Casper)

Linking to modelling connectivity (Kelsey)

My PhD Work

ECMWF

Spatiotemporal statistics for the effects of air pollution on mental health

CICK

Including using satellite data to model air pollution

Also using greenspaces and built-up areas, from GHSL

CECMWF

Global AI-Powered School Connectivity Prediction with Earth Observation

Kelsey Doerksen^{1,2,3*} PhD Student at University of Oxford kelsey.doerksen@cs.ox.ac.uk

Casper Fibæk³, Abi Riley³ Rochelle Schneider³, Isabelle Tingzon¹, Do-Hyung Kim¹ ¹UNICEF, ²University of Oxford Department of Computer Science, ³European Space Agency Φ-lab

^{giga} Giga: An initiative to connect every school to the Internet and every young person to <u>information</u>, <u>opportunity</u> and <u>choice</u>

Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all

·eesa

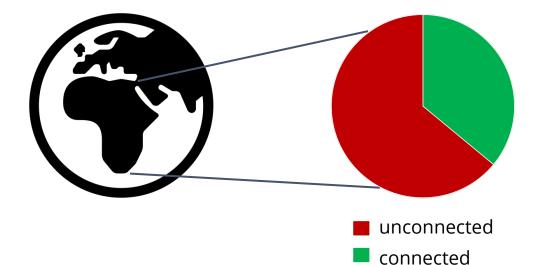
ECMWF

CECMWF Cesa

The Digital Divide

Over **500,000,000** students worldwide don't have access to the internet In 2022, only 36% of Africa's population had broadband internet

Africa has one of the world's widest **digital gender gaps** 35% vs 24% in 2020



What do Connected Schools look like?

· e esa

ECMWF

ECMWF ESA-ECMWF WORKSHOP 2024 - Machine Learning for Earth System Observation and Prediction **GIGPS** Methodology - Leveraging Geospatial Data to Predict Internet Connectivity Accepted: ICLR Machine Learning for Remote Sensing Workshop: Al-powered School Mapping and Connectivity Status Prediction using Earth Observation **Problem Setup** github.com/kelsdoerksen/airPy Binary classification task targeting Connected (1) or Unconnected (0) schools. 70/30 train/test split and 5-fold cross-validation with hyperparameter tuning. **7**61 **Engineered Features School Connectivity Data** ML Classifier Connected Prediction Not Connected Tabular ML Classifier (e.g. RF, MLP) Connected/Not Features Connected Feature engineering based on satellite images, electric grid information, and speedtest data

Geospatial Data

MODIS Land Cover, VIIRS Nightlight Gridded Population of the World, Global Human Settlement Layer, Global Human Modification, Transmission Line Network, Ookla Speedtest, Regional Encoders

ECMWF Cesa

Results - Leveraging Geospatial Data to Predict Internet Connectivity

Table 1: Per-country macro-averaged **F1-scores** of ML classifiers for Bosnia and Herzegovina (**BIH**), Belize (**BLZ**), Botswana (**BWA**), Guinea (**GIN**), and Rwanda (**RWA**)

		BIH	BLZ	BWA	GIN	RWA		
<u>ب</u>	RF	0.82	0.92	0.73	0.74	0.72		
Classifier	SVM	0.83	0.89	0.72	0.69	0.69		
Clas	LR	0.83	0.88	0.71	0.66	0.70		
M	GB	0.82	0.90	0.73	0.70	0.69		
	MLP	0.83	0.86	0.68	0.68	0.71		

Table 2: Class distribution across training and testing sets for BIH, BLZ, BWA, GIN & RWA

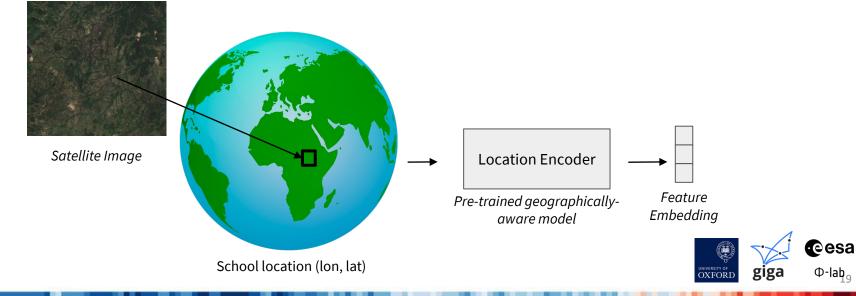
			0	0			
	Tra	nining Set (70%)		1		Total	
	Connected	Not Connected	Total	Connected	Not Connected	Total	
BIH	651	284	935	278	123	401	1336
BLZ	168	52	220	75	20	95	315
BWA	327	307	634	149	124	273	907
GIN	286	373	659	113	170	283	942
RWA	1337	1011	2348	551	456	1007	3355

Methodology - Leveraging Geospatial Data + Geographically-Aware models to Predict Internet Connectivity Under Review IJCAI AI and Social Good Track: Investigating Machine Learning-Powered School Connectivity Prediction with Earth Observation and Geographically-Aware models

ECMWF

·ecsa

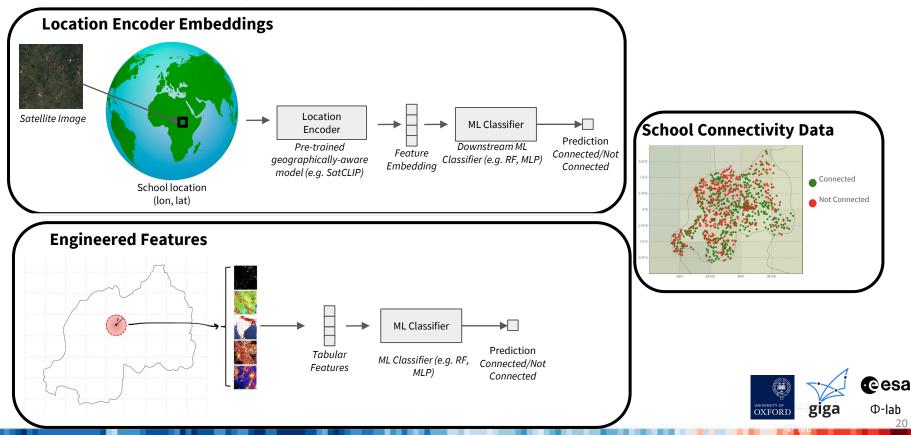
 \rightarrow CLIP (Contrastive Language-Image Pre-training) models are trained on a variety of (image, text) pairs, extending this to a geographic context whereby instead of training text to image encoders, **location encoders are trained to learn implicit representations of locations from satellite imagery**



Methodology - Leveraging Geospatial Data + Geographically-Aware models to Predict Internet Connectivity

ECMWF

· e esa



Results - Leveraging Geospatial Data + *Geographically-Aware models* to Predict Internet Connectivity

Model	Dataset	Embedding Size			
SatCLIP	Sentinel-2	256			
GeoCLIP	MediaEval Placing Tasks 2016	512			
CSP	Functional Map of the World	256			
PhilEO VHR ESA Very-High Resolution (VHR) Collection		1024			

Table 3: Location Encoder Characteristics

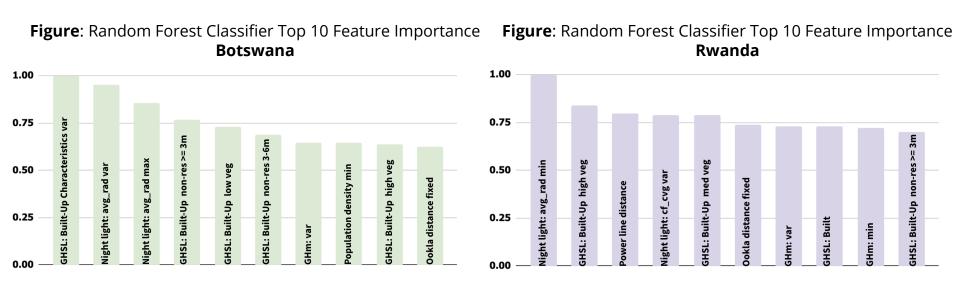
ECMWF

· e esa

Table 4: Comparison of model performance scores given by per-country binary F1 and accuracy of the ML classifiers RF, MLP, GB using Engineered Featured, SatCLIP (SC), GeoCLIP (GC), CSP, PhilEO, and PhilEO + Engineered

		SC-R18-110		SC-R18-140		SC-R50-110		SC-R50-140		SC-ViT16-l10		SC-ViT16-l40		GeoClip		CSP		Engineered		PhilEO VHR		PhilEO + Eng	
-		Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1
	RF	0.56	0.60	0.56	0.60	0.56	0.60	0.55	0.58	0.54	0.58	0.49	0.54	0.55	0.63	0.56	0.61	0.70	0.76	0.57	0.65	0.67	0.74
3W/	MLP	0.55	0.63	0.58	0.59	0.55	0.63	0.55	0.52	0.56	0.51	0.53	0.61	0.54	0.58	0.55	0.66	0.65	0.71	0.54	0.55	0.53	0.54
-	GB	0.53	0.58	0.52	0.57	0.52	0.55	0.54	0.59	0.54	0.60	0.54	0.59	0.50	0.58	0.55	0.59	0.68	0.72	0.57	0.62	0.76	0.78
	RF	0.65	0.69	0.66	0.69	0.66	0.69	0.64	0.68	0.64	0.68	0.65	0.69	0.65	0.69	0.64	0.69	0.65	0.71	0.55	0.64	0.54	0.64
RWA	MLP	0.56	0.67	0.57	0.65	0.57	0.65	0.57	0.59	0.55	0.68	0.58	0.59	0.63	0.67	0.56	0.68	0.65	0.71	0.53	0.56	0.51	0.49
	GB	0.53	0.58	0.52	0.57	0.52	0.55	0.54	0.59	0.64	0.60	0.54	0.59	0.63	0.67	0.60	0.64	0.66	0.70	0.52	0.60	0.60	0.66

Results - Leveraging Geospatial Data + *Geographically-Aware models* to Predict Internet Connectivity



CECMWF Cesa

ion and Prediction

· e esa

Case Study of Kigali, Rwanda

Model Prediction of Connected School Model Prediction of Unconnected School

- Ground Truth Connected School
- Ground Truth Unconnected School

Limitations & Future Directions

Label Quality. Unidentified latency between connection and labeling, inconsistency of label quality

Auxiliary Information Needed. Ground-based survey information may be necessary to improve performance.

Connectivity Quality and Infrastructure. Identifying infrastructure to support digital capacity building.

<mark>School Mapping with Human Mobility Data.</mark> MapBox mobility data for distinguishing building type (school/non-school).

School Mapping with Mapbox Mobility Data

Case Study of South-East Botswana

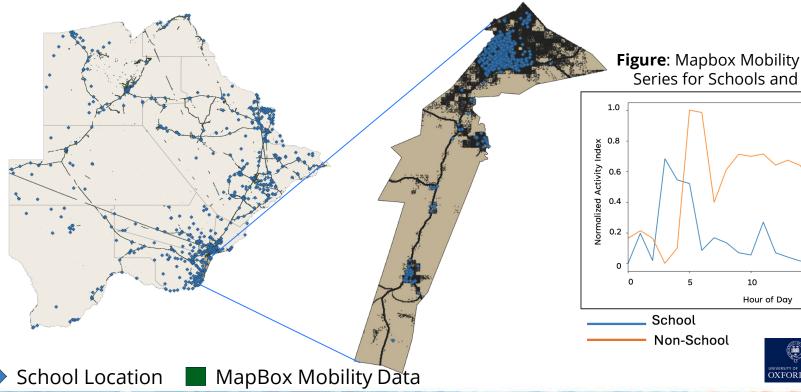


Figure: Mapbox Mobility Weekday Time Series for Schools and Non-Schools

· e esa

Φ-lab

ECMWF



Thank you!

kelsey.doerksen@cs.ox.ac.uk

www.linkedin.com/kelsey-doerksen

• 2.

www.linkedin.com/in/abiriley/

a.riley21@imperial.ac.uk