

The Space Weather Timeline Viewer

Interactive exploration of Swarm observations with other datasets and models

April 12, 2024 - Copenhagen

Eelco Doornbos, KNMI Kasper van Dam, KNMI Mark ter Linden, S&T Timothy Kodikara, DLR

.

CARL NO CONTRACTOR

Introduction Open questions in our space weather work at KNMI

- Example 1: How can we best provide advisories to international civil aviation about GNSS scintillations?
- Example 2: What should be the criteria to safely operate a medical drone service?
- Example 3: When and how will GICs be able to affect mid-latitude infrastructure?

We need effective tools - making use of observations and models - that can be used to help to answer these questions, to illustrate our answers or the reasons for not being able to provide an answer yet.

Examples from case study papers

Zakharenkova and Cherniak, 2018

Portals for accessing space weather data

Literature survey for the timeline viewer tool Conclusions

- Both details and wider context are important for understanding space weather, but these are often difficult to access in combination
- Data (observations and model output) of related phenomena need to be shown side-by-side. But each source has its own presentation.
- Need for a clear and simple user interaction model for time-based data:
 - Like Google Earth for geographical data
 - Like helioviewer for solar imagery

KNMI HAPI Server & Timeline Viewer High-level architecture

Elizabeth A. MacDonald,^{1,2}* Eric Donovan,³ Yukitoshi Nishimura,^{4,5} Nathan A. Case,⁶ D. Megan Gillies,³ Bea Gallardo-Lacourt,^{3,5} William E. Archer,^{3†} Emma L. Spanswick,³ Notanee Bourassa,⁷ Martin Connors,^{3,8,9} Matthew Heavner,^{2,10} Brian Jackel,³ Burcu Kosar,^{1,2} David J. Knudsen,³ Chris Ratzlaff,⁷ Ian Schofield⁸

New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere

https://spaceweather.knmi.nl/viewer/? layout=swarm switch steve

Real-time space weather

Conclusions & recommendations

Conclusions:

- Swarm observations and Swarm-based models help provide insight in space weather events such as storms, as well as day-to-day space weather such as plasma bubbles.
- The timeline viewer helps to make these observations much more easy to quickly inspect.
- Availability of FAST Swarm data means that the observations will be much more relevant during times when there is a strong interest, such as during and shortly after events (Starlink, Tonga, the next big geomagnetic storm...)

Recommendations 1

- The project has focused on Swarm L1B ionosphere data since 2021 and L2 thermosphere data. There is the opportunity to do a lot more:
 - data from earlier in the mission,
 - magnetic data,
 - higher level data (FAC, EEJ, ...),
 - Swarm-based climatological models (AMPS, IPB, ...).
- The use of the compact data representation of interval images looks very useful for applying to additional data sets, especially spectrograms of high rate data, keograms, etc.
- Epoch-based image sequences of remote sensing (GOLD), and global models can provide global context to Swarm insitu observations

Recommendations 2

- Because of its ease-of-use, the timeline viewer holds a lot of promise for the exploration of multi-mission datasets, such as Swarm in combination with:
 - Current and past missions providing data on space weather, space climate and comparative case studies:
 - E-POP, GOLD, ICON, COSMIC-2, CHAMP, GRACE, GRACE-FO, GOCE, Cryosat, ...
 - Preparing for synergies with future space weather related missions (NanoMagSat, Aurora, Vigil, SMILE, GDC)
 - Reviving the accessibility and interoperability of older mission data, for example POLAR and IMAGE in combination with CHAMP data

Thank you for your attention! https://spaceweather.knmi.nl/viewer/

Feedback welcome: eelco.doornbos@knmi.nl

Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management

Extra slides

Project definition and work plan

- Main project outputs: •
 - Space weather timeline viewer including Swarm and related model products
 - **Observing System Simulation Experiments** \bullet
 - Report, presentations and journal paper publication(s) lacksquare

- Project started in September 2022
- Mid-term presentation on May 10 2023
- Final presentation, January 10, 2024Abstracts submitted for the Swarm Anniversary and Science meeting, 8-12 April 2024 in Copenhagen
- Many other presentations and demos during the course of the project (Swarm DQW, ESWW, NOAA/SWPC, BOM Australia, FMI, Met Norway, Met Office, Heliophysics in Europe, DASH, etc.)

Hunga Tonga–Hunga Ha'apai eruption **Bonus case study**

- Eruption of submarine volcano near Tonga in the southern Pacific Ocean on 15 January 2022.
- Atmospheric Lamb wave observed around the globe in the lower atmosphere.
- Investigate thermospheric and ionospheric effects with Swarm and GRACE, and compare with special model runs.

Hunga Tonga–Hunga Ha'apai eruption pace Physics **Bonus case study**

- Investigate thermospheric and ionospheric effects with Swarm and GRACE, and compare with special model runs:
 - Sami3 (Sami3 is Also a Model of the Ionosphere)
 - A seamless, global, three-dimensional, physics-based model of the ionosphere/plasmasphere system.
 - HIAMCM (High Altitude Mechanistic General Circulation Model)
 - HIAMCM extends from the surface to an altitude of about 450 km. The model is based on a standard spectral dynamical core and has a high spatial resolution.
 - WACCM-X (Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension)
 - A model of the entire atmosphere that extends into the thermosphere to ~500 km altitude, and includes the ionosphere.

Geophysical Research Letters[®]

Simulation Study of the 15 January 2022 Tonga Event: Development of Super Equatorial Plasma Bubbles

Primary and Secondary Gravity Waves and Large-Scale Wind Changes Generated by the Tonga Volcanic Eruption on 15 January 2022: Modeling and Comparison With **ICON-MIGHTI Winds**

Sharon L. Vadas¹, Erich Becker¹, Cosme Figueiredo², Katrina Bossert³, Brian J. Harding⁴, and L. Claire Gasque⁴ 🕑

□ ~ < > 🐠 🕕

New and improved features of the client (web application)

- Title bar with access buttons for improved editor sidebar, new bookmarks sidebar, new info panel, indicator for number of running **HAPI** queries
- New plot types (incl. 3D Earth, interval images, epoch images, symbols)
- Now works with any HAPI server (ViRES, NASA) CDAWeb, ESA Cluster, ...)
- Support for new Intermagnet HAPI server with 1 minute and 1 second cadence data
- Plot legends

Interactive 3D Earth and orbit views

- 3D-rendered element
- Technologies used: Threlte, (three.js, WebGL) •
- Elements:
 - Earth globe with solar illumination based on analytic equations for Sun position
 - Satellite orbit
 - Satellite location with radius vector and label
 - Magnetic latitude graticule
- Camera can be in inertial, Earth-fixed or fixed local time frame, and fixed, freely movable ("orbit controls" with north up), or fixed to a satellite's location

Annotated symbols (right) & color-mapped symbols (bottom)

Interval images (Swarm B Ne, ascending tracks)

1.Individual GOLD images

19:00

20:00

21:00

Altitude (km)

Ne (10°/cm³)

17:00

18:00

16:00

22:00 23:00

1.Individual GOLD images

2.Retaining a short history of GOLD images making use of transparency

1.Individual GOLD images

2.Retaining a short history of GOLD images making use of transparency

3. Static overlays of coastlines and graticule

Altitude (km)

Ne (10⁶/cm³)

1.Individual GOLD images

2.Retaining a short history of GOLD images making use of transparency

3. Static overlays of coastlines and graticule

Altitude (km)

Ne (10°/cm³)

1.Individual GOLD images

2.Retaining a short history of GOLD images making use of transparency

3. Static overlays of coastlines and graticule

4. Overlay of IBP model contour lines and comparison with in-situ Swarm B (purple) Ne data

Validation of 3D view using IMAGE observations

