

Swarm 10 Year Anniversary & Science Conference 2024

A Swarm of jerks

Using the spatial gradient tensor for core-surface flow modelling

Frederik Dahl Madsen^{1,2}, Kathy Whaler¹, Ciarán Beggan², Will Brown², and Richard Holme³

HE UNIVERSITY of EDINBURGH School of GeoSciences

What are geomagnetic jerks?

- The internal magnetic field from the outer core is highly dynamic.
- Geomagnetic jerks: **abrupt^{*} changes** in **secular variation** (SV), often V or A shaped.

Geomagnetic jerks at GUA

Geomagnetic virtual observatory (GVO) gradients

- Bin satellite data onto a semi-regular grid on a sphere,
 - Each grid point is the centre of a cylinder (radius = 700 km)
- This is the GVO
- By taking along- and across^{*} track differences of the data, we can estimate the **spatial gradients tensor** (Hammer et al. 2022)

$$\begin{pmatrix} [\mathbf{B}]_{rr} & & \\ [\mathbf{B}]_{r\theta} & [\mathbf{B}]_{\theta\theta} & \\ [\mathbf{B}]_{r\phi} & [\mathbf{B}]_{\theta\phi} & [\mathbf{B}]_{\phi\phi} \end{pmatrix}$$

• We can obtain gradients from Swarm and CHAMP

*Across track differences only available with Swarm

GVO gradients from Swarm

- We obtain **SV** from first annual differences
- We use **4-monthly** mean gradient tensor 30 SV
- For Swarm, this gives
 28 epochs, from
 2014.4—2023.4
- For **CHAMP**, this gives 27 epoch, from **2001.4—2010.0**

Thanks to Jonas Bregnhøj Lauridsen and Chris Finlay at DTU for these data.

Flow inversion – inverting the induction equation

- Assume that magnetic field is "frozen" into the fluid flow → Neglect diffusion
 →i.e. "When the field moves, it is moved by flow in the outer core"
- This leads to reduced induction equation:

Secular variation is driven by the interaction between flow and the magnetic field

- By decomposing the flow into poloidal (S) and toroidal (T) components, we expand data and flow components into spherical harmonics (SH)
- We obtain our model with a damped least squares inversion.
 - Our models are damped: to **minimise acceleration** between epochs, and to **minimise spatial complexity**.

Flow inversion – minimum acceleration and TO-like

- We obtain our model with a damped least squares inversion.
 - Our models are damped: to **minimise acceleration** between epochs, and to **minimise spatial complexity**.
 - No use of numerical or stochastic models, and without enforcing any flow-geometry (such as quasigeostrophy or equatorial symmetry)
- We create two types of models:

Мо	odel	Damping
Mir	nimal acceleration	Damp all flow coefficients
Tor	sional oscillation (TO)-like	No temporal damping on equatorially symmetric zonal flow coefficients
Torsional oscillations:		We create (and compare!) flow models from vector and spatial gradient data from CHAMP and Swarm Vector Vector Gradients

Model performance – good agreement with data

Model resolution – gradients resolve more flow coefficients

- Resolution matrix shows how well the velocity coefficients are resolved by data
- Trace = sum of diagonals
- Ideal trace for flow of maximum SH degree 14 = 224

Model resolution – gradients resolve more flow coefficients

 Gradient based models resolve ~133% of that of the vector derived models for Swarm

Model resolution – gradients resolve more flow coefficients

• Slight improvement when using gradient data for flow-modelling in CHAMP era

Averaging functions

- Averaging functions (AF) are great way to visualise spatial resolution
- They indicate how well a model estimate is localized at a given point
- We calculate AFs across the core-mantle boundary (and normalise values), in order to evaluate model resolution in space

Example of perfect averaging function at a point with max. spherical harmonic degree 14. From Whaler, Olsen, and Finlay (2016), GJI.

Averaging functions reveal regions of improved resolution

- Poloidal flow, S, appears well resolved most locations
- Pronounced
 'ambiguous' band along magnetic equator?
- Weak resolution in South Atlantic, North Pacific, and North Polar region

Averaging functions reveal regions of improved resolution

- Strong increase in AF (nearly) everywhere when using gradients
- Increased spatial resolution confining ambiguous patches?

Averaging functions reveal regions of improved resolution

- Strong increase in AF (nearly) everywhere when using gradients
- Much weaker Afs for toroidal flow than poloidal

Result: Flow acceleration pulse in between jerks?

Conclusions

- We inverted vector and spatial gradient data from CHAMP and Swarm for core-surface flow
- We found that spatial gradient data from Swarm resolved the flow significantly better than vector data
- ...whereas spatial gradient and vector data from CHAMP performed comparatively.
- Our flow models suggests that the 2017 and 2020 jerks were caused by a wave-like pulse in a_{Φ}
 - This suggests a new jerk in the Pacific around 2023.

Predicting variations in length-of-day (ΔLOD)

- The minimum acceleration models do a poor job at predicting ΔLOD variations
- TO-like models predict better
- Equal performance for gradients and vectors

