

MULTIPLY-ESA HRSL status of development and implementation

Anca Nemuc¹, Livio Belegante¹, Ilya Serikov², I. Stachlewska³, V. Amiridis⁴, B. Brügmann², D. Nicolae¹, S. Vajaiac⁵

¹National Institute of Research and Development for Optoelectronics (INOE), Magurele, Romania ²*Max-Planck-Institute for Meteorology (MPI), Hamburg, Germany*

³Institute of Geophysics, Faculty of Physics, University of Warsaw, , Warsaw, Poland

⁴Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, , Athens, Greece

⁵National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania

Presenting author email: <u>anca@inoe.ro</u>

System specifications

Mephisto Q Nd:YAG DPSSL

Structure of the instrument manufactured

• Objective : Development of a novel multi-• Telescopes wavelength HSRL system (3b + 3a + 3d) for both ground based (phase 1) and airborne operation (phase 2: after-2024)

• <u>Target of the HSRL</u>: better than EarthCARE specifications

Main features

- $3\beta + 3\alpha + 3d$
- Fabry-Pérot Interferometers for HSR filtering at 355 and 1064 nm – based on pressure adjustment for tuning the alignment
- Iodine filtering technique at 532 nm
- Low laser pulse energy (to conform the eye-safety requirements)
- High laser frequency rate
- Decoupling spectral separation unit (interferometers, iodine filter) from telescope with optical fibers (to allow

mission wavelegnths	355nm, 532nm, 1064nm
arget energy	2mJ @ 1064nm, 1.5mJ @
2 355nm	
Repetition rate	4 kHz

locking lodine vapour cell (line 1109,

1.5mJ @ 532nm, 1.5mJ

Fabry-P erot interferometers

7.5

5000-8000

500-800

5000-8000

500-800

Wollaston prisms

Backscatter, extinction, depolarization

- HSR filter at 532nm Iodine vapour cell
- HSR flter at 355, 1064nm Depolarization separation

Laser

Frequency

532.26nm)

• Aerosol products

Requirement	Data products (EarthCARE)	MULTIPLY target
Detectability threshold		
α (355nm)	0.05 (1/km)	0.02-0.05 (1/km)
β (355nm)	0.0008 (1/km/sr)	0.0003-0.0008 (1/km/sr)
AOD (355nm)	0.05	0.02-0.05
δ (355 nm)	N/A	0.02
Accuracy		
α (355nm)	10-15%	10-15%
β (355nm)	10-15%	10%
AOD (355nm)	10-15%	10%
δ (355 nm)	N/A	10%
Vertical resolution (m)		
α (355nm)	100-500	100
β (355nm)	100-500	7.5
AOD (355nm)	_	-

NA

10000

10000

10000

NA

Horizontal resolution (m)

HSRL CAD design@MPI

MOPA System including the Coherent Mephisto-Q Seed Laser at MPI during testing phase

Detailed design report completed

- breadboard design: transmitter, HSRL receiver, vibration filtering module, data acquisition block and framing
- FPI etalons

Manufactured

- First vacuum chamber (one
- channel)
- HSRL laser
- 8 FPI (4 UV; 4IR)
- Telescopes
- PMT unit parts
- Iodine filter for VIS HSRL
- Emission unit (beam expansion)
- Polarization channels
- Frame components

- better mechanical stability)
- Extra telescopes for polarization channels
- Additional "near"-range telescope (to extend dynamic range)

Honeycomb FPI design

2xFPIs per channel 2 Telescopes 2 Wavelength **1** Polarization Total: 8 FPIs matrix: 4x4x2 size: 488x484x216 mm weight: 55 kg

δ (355 nm)

α (355nm)

β (355nm)

AOD (355nm)

δ (355 nm)

Vacuum chamber & control

- Low pressure to relax the constraint to control the temperature
- Compensation by piezo actuators
- Vacuum pumps + N_2 bottles at ground
- Small vacuum pumps, no gas bottles in the aircraft
- Individual control and valves for each vacuum chamber

Vacuum control unit-for one FPI

Some numbers from the lab

- 1064 FPI elastic suppression in molecular channel of 525 (two etalons) (800 required for aerosols* and 30000 for water clouds)
- tests with frequency locking off expect better results with frequency locking on over 800
- 355 FPI elastic suppression of 450 (two etalons) (300 required for water clouds*)
- 532 iodine not tested yet but 60 required for aerosols* and 1500 for water clouds*)

*to retrieve aerosol optical properties with 1% uncertainty

Project implementation plan

• One channel operational by end of 2023

- -night-time: background suppression not fully integrated (additional FPI)
- Fully operational on all channels by end of 2024 (ground based)
 - -3b + 3a + 3d
 - night-time and day-time
- Airborne integration by end of 2025

ESA-JAXA Pre-Launch EarthCARES cience and Validation Works hop 13-17 November 2023 |ESA-ESRIN |Frascati (Rome), Italy

Acknowledgements

MULTIPLY project is funded through European Space Agency contract No.4000112373/14/NL/CT

This work was supported also by the Core Program within the Romanian National Research Development and Innovation Plan 2022-2027, carried out with the support of MCID, project no. PN 23 05 and through Program 1- Development of the national research-development system, Subprogram 1.2 - Institutional performance - Projects to finance the excellent RDI, Contract no. 18PFE/30.12.2021. Part of the work was financed by the European Commission under the Horizon 2020 – Research and Innovation Framework Programme, H2020-INFRADEV-2019-2, Grant Agreement number: 871115