

The WMO GAW Aerosol Lidar Observation Network (GALION): status and coordination plans relevant to EarthCARE

Ellsworth J. Welton, NASA USA

Co-Authors on the GALION Data Center Working Group:

Lucia Mona, CNR Italy

Eduardo Landulfo, IPEN Brazil

Atsushi Shimizu, NIES Japan

Thierry Leblanc, JPL USA

Claudio Dema, CNR Italy

Fernando Chouza, JPL USA

Alex Mendes, IPEN Brazil

Juan Pallotta, CITEDEF Argentina

GALION is a network of lidar networks organized through the WMO Global Atmospheric Watch (GAW) program.

Judd Welton (NASA, USA) and Lucia Mona (CNR, Italy) are co-chairs Guidance and direction provided by steering committee (network heads) and GAW Aerosol SAG

See GAW Report 178 (2008)

Original GALION Networks:

AD-Net
 EARLINET
 CIS-LINET
 LALINET
 CORALNET
 CREST

MPLNET

NDACC Lidar

Plan for the implementation of the GAW Aerosol Lidar Observation Network GALION

(Hamburg, Germany, 27 to 29 March 2007)

active GALION members, signed agreements with WMO as contributing networks

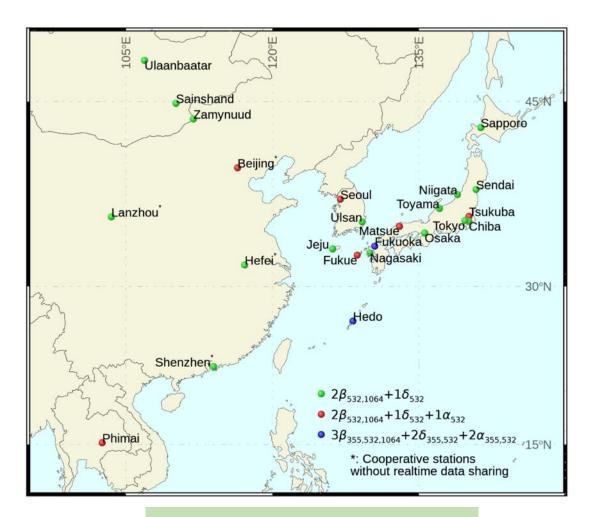
global

Objectives: provide long term, coordinated lidar network profiling of aerosol properties to support the following


- 1. climate research and assessment
- air quality assessment and forecasting
- 3. Plume monitoring for special events
- 4. Satellite cal/val and synergistic research
 - Cover satellite lidar gaps

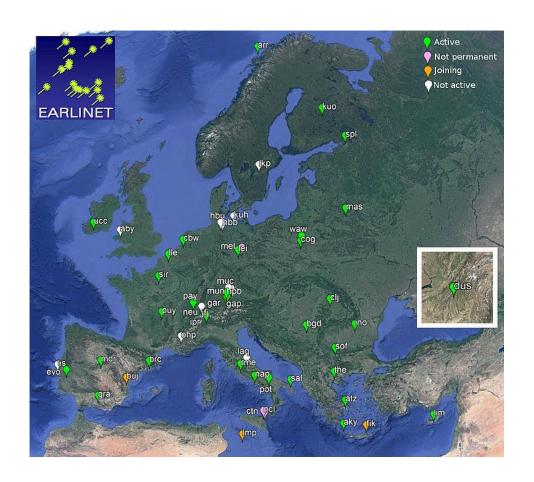
Motivations:

Global coverage is only achievable by combining efforts of individual lidar networks. We have to work together.


Provide easier and more informative access to our data across all networks, enable coordinated application support

Programmatic planning with other networks (WMO OSCAR, etc)

Asian dust and aerosol lidar observation network — AD-Net

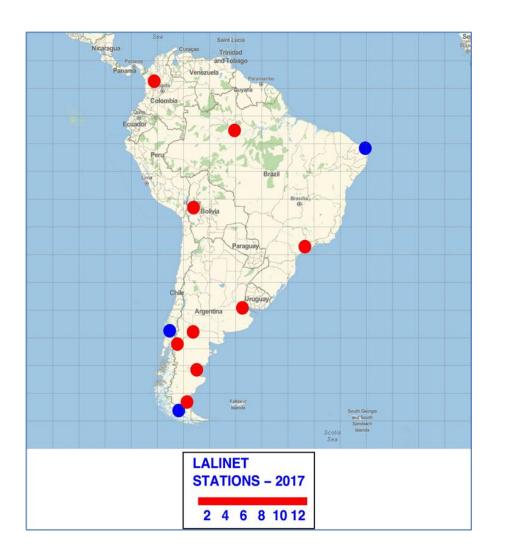

#Realtime data sharing is not applicable to lidars in China

- > 96 profiles / day, vertical resolution = 30 m
- ➤ 532 nm attenuated backscatter coefficient + depolarization ratio (up to 18 km) & extinction coefficient (with fixed lidar ratio S1 = 50sr, up to 9 km)
- ➤ Available in figures and netCDF at: https://www-lidar.nies.go.jp/AD-Net/
- References: Shimizu et al., Opt. Eng. (2017) doi:10.1117/1.0E.56.3.031219
- Contact: shimizua@nies.go.jp

European Aerosol Research Lidar NETwork — **EARLINET/ACTRIS**

- mainly based on Raman lidar systems, able to provide vertical profiles of aerosol extinction and backscatter coefficients without significant assumptions.
- most of the stations at **different wavelengths**
- > currently most of the sites provides also linear particle depolarization ratio
- > most of the sites have **co-located photometers**

EARLINET is since 2011 integrated in **ACTRIS** (Aerosol, Clouds, and Trace gases Research Infrastructure)


https://www.earlinet.org/

Pappalardo, G., et al., EARLINET: towards an advanced sustainable European aerosol lidar network, Atmos. Meas. Tech., 7, 2389–2409, https://doi.org/10.5194/amt-7-2389-2014, 2014.

Latin America Lldar NETwork - LALINET

ST.	ID	LAT(S) LON(W)	Channels (nm)
Buenos Aires	AEP	34.56°S 58.42°W	1064, 532 ^p & 355 ^p
Buenos Aires	VMA	34.56°S 58.51°W	1064, 607, 532 ^p , 387 & 355 ^p
Neuquen	NQN	38.95°S 68.13°W	1064, 532 ^p & 355 ^p
Barilo- che	BRC	41.15°S 71.16°W	1064, 607, 532, 387 & 355
Commo doro	CDR	45.79°S 67.46°W	1064, 532 & 355
Gal- legos	RGL	51.61°S 69.31°W	1064, 532 ^p & 355 ^p
Punta Arenas	PAR*	53.13°S 70.88°W	1064, 607, 532 ^p , 408, 387 & 355 ^p
S. Paulo	SPU	23°13′ 46°28′	1064, 607, 532, 408, 387 & 355
S. Paulo	SPT	VAR	607, 532
Man- aus	MAO	02.60°S 60.21°W	408, 387, 355
Natal	NAT	05.82°S 35.20°W	1064, 532 ^p & 355 ^p
Temuco*	TMU*	38.74°S 72.62°W	1064, 532 ^p & 355 ^p
Medellin	MED	06.26°N 75.58°W	532 & 355
La Paz	LPZ	16.54°S 68.07°W	1064, 532 ^p & 355 ^p

https://lalinet.org

Measurements of 1064 nm, 532 nm and 355 nm from elastic and multi-wavelength lidar systems in order to retrieve backscatter, extinction, lidar ratio profiles, plus backscatter and extinction Angstrom Exponent and Color ratio.

LALINET: The First Latin American—Born Regional Atmospheric Observational Network https://doi.org/10.1175/BAMS-D-15-00228.1

NASA Micro Pulse Lidar Network - MPLNET

Global Backscatter Lidar Network: 2000 - current

- 82 sites total (25 operational, 57 closed): 28 countries
- 12 more sites in planning
- Continuous (day/night) operations, colocation with AERONET

Instrumentation:

- Micro Pulse Lidar, miniMPL
- Eye safe, green backscatter lidar. Polarized in early 2000s
- Entire network has polarized MPL since ~2016

MPLNET History:

- Three Version Releases: V1 and V2 (2000 2021)
- Version 3 Released in Nov 2021

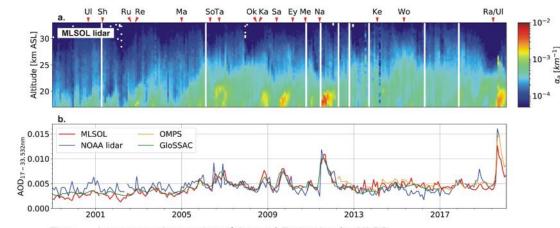
Updates Since ICAP 2022:

- More sites installed, many more in final planning stages (ops by 2024)
- Focus on new sites in western North America near fire sources
- Ongoing V3 reprocessing of older data back to 2000

https://mplnet.gsfc.nasa.gov

Data Products:

- NRB: Lidar signals; volume depolarization ratios; diagnostics
- CLD: Cloud heights; thin cloud extinction and optical depths; cloud phase
- AER: Aerosol heights; extinction, backscatter, and depolarization ratio profiles; lidar ratio
- PBL: Mixed Layer Top and estimated AOD
- L1 and L1.5 products available in NRT, QA screen applied at L1.5 and L2
- L3 products in development (created from L2 data)


Network for the Detection of Atmospheric Composition Change - NDACC

NDACC Sites	Aerosols	Ozone	Temperature	Water Vapor	Wind
All times (active and inactive)	20	15	15	15	1
In operation today (active)	10	10	10	10	1

Long-term monitoring of atmospheric composition http://www.ndacc.org

NDACC provides a measure of stratospheric AOD contribution to total column

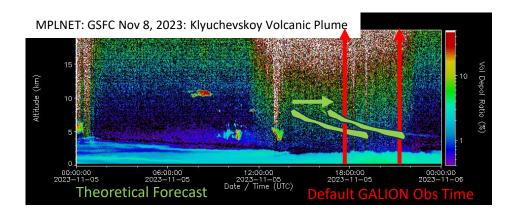
Top: Long term time series of Aerosol Extinction by MLSO Bottom: Stratospheric AOD from MLSOL and NOAA-MLO lidar, OMPS, and GloSSAC

Chouza et al. ACP (2020): Long-term (1999–2019) variability of stratospheric aerosol over Mauna Loa, Hawaii, as seen by two colocated lidars and satellite measurements, ACP, 20(11), 6821-6839 Leblanc et al., BAMS, State of the Climate 2020, Chapter 2, Sidebar 2.2

GALION: Operations and Working Groups

GALION operations: from 2008 original report

Due to the variety of lidar instruments and processing systems throughout the contributing networks, it was decided to target a <u>minimum</u> of 2 observations per week.


- Monday and Thursday around sunset
- Some networks continuous 24/7, number growing

Products provided from a given site are dependent upon the capability of the onsite lidar and network.

This system accommodates a tiered approach to data quality based on lidar capability and external observations.

Working groups:

- Methodology
- Technologies
- Quality Assurance
- Applications
- Data Center
 Data Center Working Group formed in Dec 2021
 Welton Lead. Representatives from each network

Periodic or Continuous data are important for surface obs:

- Inherently limited spatial information
- We can provide better temporal vs satellite
- More helpful for forecast validation

Methods, Technology, Data Quality

• GALION has established standards and each network has traceable history of peer reviewed calibration and processing methods.

Aerosol Observation Requirements and Data Variables

Parameter (product)	Basic lidar type
Range corrected signal (colour plots of aerosol and cloud distributions)	BL
Attenuated backscatter coefficient (calibrated range-corrected signal)	BL
PBL depth	BL
Aerosol backscatter coefficient	BL+SPM
Aerosol type discrimination (dust, anthropogenic)	BL+DL
Aerosol extinction coefficient (estimate), optical depth, column lidar ratio	BL+SPM
Aerosol extinction coefficient, optical depth, lidar ratio	RL or HSRL
Ångström exponent (backscatter-related)	MBL
Ångström exponent (extinction-related)	MRL
Aerosol type determination (dust, maritime, fire smoke, urban haze)	MRL+DL
Aerosol microphysical properties (volume and surface conc., refractive index)	MRL
Single scattering albedo (aerosol)	MRL

BL: Backscatter lidar DL: Depolarization

HSRL: High Spectral Resolution Lidar

SP: Sunphotometer RL: Raman lidar M: Multi-wavelength

GALION Data Center Working Group: Metadata & Vocabularies Standardize and Codify Variables, Instruments, etc

Lidar Variables:

Relative_Attenuated_Backscatter
Attenuated_Backscatter
Volume_Depolarization_Ratio
Scattering Ratio

Cloud Variables:

Cloud_Base_Height
Cloud_Top_Height
Cloud_Backscatter
Cloud_Extinction
Cloud_Lidar_Ratio
Cloud_Optical_Depth
Cloud_Effective_Radius_Estimate
Cloud_Depolarization_Ratio
Cloud_Phase

Mixed Layer Variables:

Mixed_Layer_Height
Mixed_Layer_Aerosol_Optical_Depth_Estimate
Mixed_Layer_Aerosol_Optical_Depth

Aerosol Variables:

Aerosol_Layer_Height Aerosol_Backscatter

Aerosol_Extinction_Estimate

Aerosol_Extinction

Aerosol_Lidar_Ratio_Estimate

Aerosol Lidar Ratio

Aerosol_Optical_Depth_Estimate

Aerosol_Optical_Depth

Aerosol_Angstrom_Exponent_Estimated

Aerosol Angstrom Exponent

Aerosol Effective Radius Estimate

Aerosol_Single_Scatter_Albedo_Estimate Aerosol_Volume_Concentration_Estimate Aerosol Surface Concentration Estimate

Aerosol Refractive Index Estimate

Aerosol Effective Radius

Aerosol_Single_Scatter_Albedo

Aerosol Volume Concentration

Aerosol Surface Concentration

Aerosol Refractive_Index

Aerosol_Depolarization_Ratio

Aerosol_Type

Instrumentation:

instrument	code	wigos	wigos_name
Backscatter Lidar	BL	341	Backscatter lidar
Raman Lidar	RL	143	Raman lidar
High Spectral Resolution Lidar	HSRL	342	High spectral resolution (HSR) lidar
Doppler Wind Lidar	DWL	142	Doppler wind lidar
Differential Absorption Lidar	DIAL	335	Differential absorption lidar (DIAL)
Integrated Path Differential Absorption Lidar	IPDIAL	320	Integrated path differential absorption (IPDA) lidar
Polarized Lidar	PL	pending	pending
Multi-Wavelength Backscatter Lidar	MWBL	341	Backscatter lidar
Multi-Wavelength Raman Lidar	MWRL	143	Raman lidar
Multi-Wavelength High Spectral Resolution Lidar	MWHSRL	342	High spectral resolution (HSR) lidar
Multi-Wavelength Polarized Lidar	MWPL	pending	pending
Sunphotometer or Sun-Sky Photometer	SP	244	Sun-tracking photometry

Synergy with WMO OSCAR and WIGOS Metadata:

Welton is on the WMO Expert Team for Atmospheric Data Management Mona is on the GAW Aerosol SAG

GALION Data Center Working Group: Metadata & Vocabularies

Standard Variables Mapped to Instrumentation and other parameters, including WIGOS OSCAR

Stand	iard variables iv	napped to	ınstru	ımentat	ion and ot	ner	para	imeters, i	ncluding WiGo	JS USCAR
	variable	description	n	unit instrumer	itation layer lev	el wigos	3	wigos_name	application_area	
No map to WIGOS/OSCAR, Some variables are in process of be		uncalibrated lidar signal		BL RL HSRL DWL DIAL IPDIAL MWBL MWRL MWHSRL	PBL freeTroposphere UTLS MUS	12251	Relative att	enuated backscatter	no	
Some may not ever be added to W	IGUS.	calibrated lidar signal		m-1.sr-1 BL MW/HSRI	PBL 1	12248	Attenuated	backscatter	no	,
Volume_Depolarization_Ratio	volume depolarization	ratio	percent	PL MWPL	PBL freeTroposph UTLS MUS	ere 1	no	no		no
LADVACAL LOVIAY HAIANS	L ABYREAL ISVAY RAIGHT		l m	T RI	UTLS MUS	1	112	IR2 I ABYNENI ISVA	r nount	CIIMSTOMANITATINA
Specifies instrument requirements for Units, Atmospheric Layers (PBL – Strand mapping to WIGOS/OSCAR		Aerosol layer height		BL RM RL HSRL DWL DIAL IPDIAL MWBL MWHSRL	PBL freeTroposphere UTLS MUS	12162	Aerosol lay	er height	climateMonitoring	
Aerosol_Extinction_Estimate	Aerosol Extinction Coef	ficient	m-1 km-1 Mm-1	BL BL_SP MWBL MWBL_SP	PBL freeTropospho UTLS MUS	1. ere 2	5 121	45 Particle light	extinction coefficient	climateMonitoring aeronauticalMeteorology atmosphericCompositionForecasting atmosphericCompositionMonitoring
Aerosol_Extinction	Aerosol Extinction Coef	ficient	m-1 km-1 Mm-1	RL HSRL MWRL MWHSRL	PBL freeTroposph UTLS MUS	1. ere 2	5 121	45 Particle light	extinction coefficient	climateMonitoring aeronauticalMeteorology atmosphericCompositionForecasting atmosphericCompositionMonitoring
Actosor Eldar Hatio Estimate	Aerosol_Lidar_Hallo_Estimate	Aerosoi ligar ratio	1 31	BL_SP MWBL_SP	UTLS MUS		3 no 1 110	ino	по	1
	Aerosol_Lidar_Ratio	Aerosol lidar ratio		sr RL HSRL	PBL 1.: freeTroposphere 2	no	no		no	

GALION

The GAW

GALION The GAW Aerosol Lidar Observation Network

Applications **GALION Networks** Other Networks About Login

in development: some GALION networks metadata only from WMO OSCAR while we build the system, all "Other" networks metadata from WMO OSCAR.

#	Sites				11010 Cit. N	Other Networks			
	Network	Site Name	Status	Location	WMO Site Name	Network	Site Name	Status	
1	EARLINET	Athens	operational	Lat: <u>37.96</u> Lon: <u>23.78</u> Elevation: 212.0 m	Zografou Athens WIGOS ID: 0-20008-0-ATZ				
2	EARLINET	Barcelona	operational	Lat: 41.393 Lon: 2.12 Elevation: 115.0 m	Barcelona WIGOS ID: 0-20008-0-BRC				

GALION Data Center Working Group: New Data Center and Website

https://galion.world

NASA AWS Contract to Support GALION Data Center

Django and Python development

Capabilities

GALION information and search and discovery Automated handshakes with WMO OSCAR database Metadata APIs

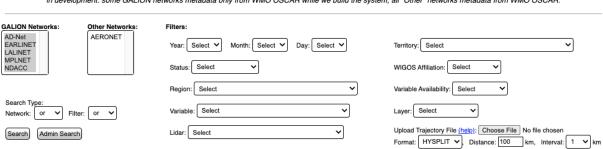
- Upload from GALION networks (Push)
- Developing upload Pull capability (easier maintenance)

Tools in development (functional but not public*)

- PyroCb/Smoke Alerts and Monitoring
- AQ Support

^{*} Some networks do not have full metadata submissions yet. We are using OSCAR metadata in place of, which lacks some information and is currently out of date. Tools in development and future will not be implemented until metadata archive is complete.

GALION


The GAW

GALION The GAW Aerosol Lidar Observation Network

Applications **GALION Networks** Other Networks About User: welton

Search Tool 2

in development: some GALION networks metadata only from WMO OSCAR while we build the system, all "Other" networks metadata from WMO OSCAR.

Trajectory 1 Sites: 5000.0 m

perational

GALION Data Center Working Group: New Data Center and Website

https://galion.world

NASA AWS Contract to Support GALION Data Center

- Upload from GALION networks (Push)
- Developing upload Pull capability (easier maintenance)

Tools in development (functional but not public*)

- Metadata Downloads
- Trajectory analysis

- PyroCb/Smoke Alerts and Monitoring
- AQ Support

Case Study: Alberta Fires May 2023 Back Trajectory May 13 **Observed Smoke Heights** El Arenosillo, Spain MPLNET site

(trajectory analysis from GSFC 3 days earlier show origin over Alberta, CA)

* Some networks do not have full metadata submissions yet. We are using OSCAR metadata in place of, which lacks some information and is currently out of date. Tools in development and future will not be implemented until metadata archive is complete.

GALION Data Center Working Group:New Data Center and Website

https://galion.world

NASA AWS Contract to Support GALION Data Center Django and Python development

Capabilitie

GALION information and search and discovery Automated handshakes with WMO OSCAR database Metadata APIs

- Upload from GALION networks (Push)
- Developing upload Pull capability (easier maintenance)

Tools in development (functional but not public*)

- Metadata Downloads
- Trajectory analysis

Future Tools

- API Data Downloads (current and common formats)
- Quicklook Imagery
- Volcanic Alerts and Monitoring
- PyroCb/Smoke Alerts and Monitorin
- AQ Support

GALION JSON Metadata: file snippets

```
"level": "1.5", "MoBBL",
"Instrumentation": "MoBBL",
"Instrumentation": "MoBBL",
"AD-Net
"ange_resolution": "38",
"range_nesolution": "38",
"range_nesolution": "38",
"lower-lider.nies.go.jp/AD-Net/fig/Tsukuba2-230401-230430.png"

| "Intips://www-lider.nies.go.jp/AD-Net/fig/Tsukuba2-230401-230430.png"
| "Intips://www-lider.nies.go.jp/AD-Net/fig/Tsukuba2-230401-230430.png"
| "Intips://www-lider.nies.go.jp/AD-Net/fig/Tsukuba2-230401-230430.png"
| "Intips://www-lider.nies.go.jp/AD-Net/fig/Tsukuba2-230401-230430.png"
| "Intips://www.lider.nies.go.jp/AD-Net/fig/Tsukuba2-230401-230430.png"
| "Intips://wilos.go.jp/AD-Net/fig/Tsukuba2-230401-230430.png"
| "Intips://wilos.go.jp/AD-Net/fig/Tsukuba2-230401-230430.png"
| "Intips://wilos.go.jp/AD-Net/fig/Tsukuba2-230401-230430.png"
| "Migos.go.servation_seemetry": "PII5M",
"Migos.go.servation_workingth: "1245",
"Migos.go.servation_workingth: "1245",
"Migos.go.servation_workingth: "1642",
"Migos.go.servation_tangle_resolution;" "30",
"Migos.go.servation_workingth.nit": "178",
"Migos.go.servation_wavelength: "32",
"Migos.go.servation_wavelength unit": "178",
"Migos.go.servation_wavelength.nit": "178",
"Migos.go.servation_tangle_resolution_unit": "178",
"Migos.go.servation_tangle_resolution_unit": "178",
"Migos.go.servation_temporal_reporting_interval": "178",
"Migos.go.servation_temporal_reporting_interval
```

```
"wavelength_untt": "nm",
"range_resolution":
"lause_" "BBL_freatroposphere.UTLS",
"lause_" "BBL_freatroposphere.UTLS",
"lause_" "BBL_freatroposphere.UTLS",
"lause_" "BBL_freatroposphere.UTLS",
"https://data.earlinet.org/api/services/restapi/opticalproducts/filename/EABLINET_AerRemSen_pot_Lev8l_e8:
"https://data.earlinet.org/api/services/restapi/opt
```

```
"level": "1,5,2",
"instruentation": "BL.SP",
"wavelength": "32,2.0",
"wavelength": "32,2.0",
"vavelength": "32,2.0",
"range_resolution": "74,9481",
"range_nterior "range": "Refrommereutitismus".
"url_browse": "Refrommereutitismus".
"url_browse": "Refrommereutitismus".
"url_browse": "Refrommereutitismus".
"https://mplnet.gsfc.nasa.gov/dawnload/version=V36level=L156product=AER6site=GSFC5year=20236month=026day="
"https://mplnet.gsfc.nasa.gov/download/version=V36level=L156product=AER6site=GSFC5year=20236month=026day="
"https://mplnet.gsfc.nasa.gov/download/version=V36level=L26product=AER6site=GSFC5year=20236month=026day="
"https://mplnet.gsfc.nasa.gov/download/version=V36level=L26product=AER6site=GSFC5year=20236month=026day="
"https://mplnet.gsfc.nasa.gov/download/version=V36level=L26product=AER6site=GSFC5year=20236month=026day="
"https://mplnet.gsfc.nasa.gov/download/version=V36level=L26product=AER6site=GSFC5year=20236month=026day="
"https://mplnet.gsfc.nasa.gov/download/version=V36level=L156product=AER6site=GSFC5year=20236month=026day="
"https://mplnet.gsfc.nasa.gov/do
```

Links to network data:

- Files (FTP/SFTP or API)
- Quicklooks (static images or API)

User Data Downloads:

Search tool provides JSON metadata. User can easily obtain links to requested data, and automate retrieval with our API

GALION Data Ordering From our Website Issues to consider:

- Data Policy & DOI/License
- Common file formats
- Open Access or Authentication
 - AD-Net and MPLNET open
 - EARLINET just opened

Quicklook Imagery

common vs individual images

^{*} Some networks do not have full metadata submissions yet. We are using OSCAR metadata in place of, which lacks some information and is currently out of date. Tools in development and future will not be implemented until metadata archive is complete.

E-PROFILE: Aldergrove UK May 12

GALION Data Center Working Group:New Data Center and Website

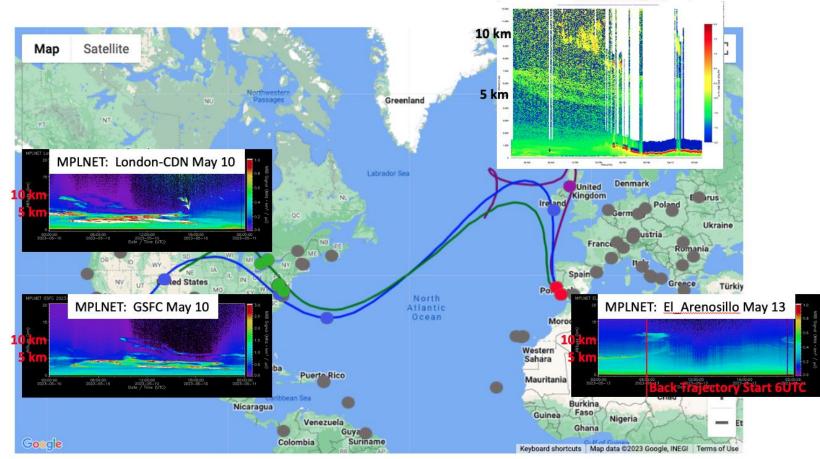
https://galion.world

NASA AWS Contract to Support GALION Data Center Django and Python development

Capabilitie

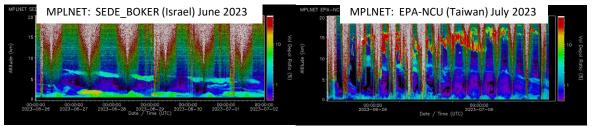
GALION information and search and discovery
Automated handshakes with WMO OSCAR database
Metadata APIs

- Upload from GALION networks (Push)
- Developing upload Pull capability (easier maintenance)


Tools in development (functional but not public*)

- Metadata Download
- Trajectory analysis

Future Tools


- Quicklook Imagery
- API Data Downloads (current and common formats)
- Volcanic Alerts and Monitoring
- PvroCb/Smoke Alerts and Monitoring
- AQ Support

Conceptual graphic of quicklook imagery: May 2023 smoke trajectory analysis example

^{*} Some networks do not have full metadata submissions yet. We are using OSCAR metadata in place of, which lacks some information and is currently out of date. Tools in development and future will not be implemented until metadata archive is complete.

Challenge going forward: PyroCb
Dealing with annual smoke
distribution in FT – UTLS across NH

Conclusion: Infrastructure and New Data Center

Information and search and discovery. Centralized coordination with WMO OSCAR

- Better programmatic planning of observations, within GALION and beyond (other networks)
- Easier to find data, automate with APIs
- Continue working on common data browse, data format & download capabilities

Develop applications

- Back trajectory analysis tool (done, testing)
- Future: Coordinated support for WMO SDS-WAS, Volcanic and fire/smoke alerts and monitoring
 - Some networks already contributing to such work, experience & blue prints for future action
- GALION networks are part of EarthCARE Validation Team
 - We are working with EVDC to harmonize validation files with GALION vocabularies and definitions
- FAIR Data Support and Integration
 - Data policies and licenses must be handled appropriately if we merge data across networks
 - Consider integration with WMO Information System (WIS) 2.0 (in dev/testing now)
 - Current WIS/GTS system (closed to NMHS) will end 2030
 - WIS 2.0 offers ability to use standardized discovery and delivery for atmos comp data (same as met data temperature and pressure)

Conclusion: GALION Activities

Intercomparisons and Coordination Between GALION members

- MPLNET EARLINET
 - Intercomparisons in 2024 at collocated sites at Barcelona and Payerne
 - CARGO-ACT: new HORIZON project starts March 2024 (EU ACTRIS and USA university and gov members)
 - Develop roadmap for cooperation between EU and USA research infrastructures, including lidar & ceilometer (Mona, Welton)
- EARLINET LALINET: Heterogeneous network processing
 - EARLINET Single Calculus Chain (SCC) well established. LALINET new Lidar Processing Pipeline (LPP) in development
 - Argentina Weather Service using EARLINET/SCC to process and distribute data
 - Harmonization campaign 2025: comparison of new LPP to SCC processing of LALINET data

Ceilometer Networks: inclusion in GALION (or at least collaboration)

- E-PROFILE: talks underway
- US ASOS (met observation sites): ceilometer profile data (100s of sites) may soon be available. Initial discussions starting.
- US Unified Ceilometer Network (UCN): ceilometers at EPA-PAMS sites (~50). UCN in transition at the moment, talks stalled.

Other Activities

- MPLNET GRASP: Comparison of MPLNET aerosol retrievals to those from GRASP using the same lidar signal input (MPLNET L1). Paper in prep.
- New GALION Implementation plan? Revive other working groups?