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Abstract

The present default Langmuir Probe (LP) algorithm for estimating the plasma
density relies on three major suppositions: the orbital motion limited (OML)
theory is applicable, the surrounding plasma consists of pure oxygen ions only,
and the along-track ion velocity coincides with the spacecraft orbital speed.
These assumptions are routinely violated, particularly with respect to ion com-
position on the nightside and during periods of low solar activity as well as
at auroral and polar latitudes, where ion drifts of magnetospheric origin are
dominating. Both factors are compromising the accuracy of the plasma den-
sity measurements. Further, numerical simulations of the spacecraft’s plasma
environment and observational results have shown that plasma shielding ef-
fects are not negligible. These effects have been taken into account with the
novel SLIDEM (Swarm LP lon Drift and Effective Mass) product, which also
yields improved estimates of the plasma density, the along-track ion drift and
the effective ion mass along the orbital path. This is done by additional use
of the ion current to the faceplate at Swarm’s front side. It will be shown, that
the measurements of the Langmuir probe alone can result in reliable ion mass
and accordingly revised plasma density estimations.

Langmuir probes as part of the Electric Field Instrument (EFI)

Fig. 1. The figure shows the front view of the Swarm
satellites with the Thermal lon Imager (Tll) and its ver-
tical and horizontal sensors mounted on a rectangu-
lar plate (“frontplate”, FP) in the center and the two
spherical Langmuir Probes at the bottomside. The
front plate of the CEFI instrument allows with a fixed
negative bias (-3.5 V) the estimation of the ram plasma
density with 16 Hz resolution during periods, when the
Thermal lon Imager (Tll) is off.
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The two spherical Langmuir probes, which are coated with nitrated titanium (TiN) and
gold-plated titanium (Au), respectively, are working with different sensitivities, called “low
and high gain”, to cover the large dynamic range in the F-layer ionosphere, which is
probed by Swarm (Buchert and Nilsson, 2016; Knudsen et al., 2017). Electron tempera-
ture (7:) and plasma potential (f,,) values are estimated by applying a sinusoidally varying
bias in the linear electron current region of the U-| characteristics, the position of which is
at a fixed offset from the tracked bias potential (zero current). The electron density (NNV,) is
always derived from the real admittance (the derivative) in the ion current region.

For a negatively biased (usually -3.5 V) EFI faceplate, taken as a planar probe with
an area of 804 ¢m? (Knudsen et al., 2017) ignoring edge effects and assuming quasi-
neutrality (N. = NN;), the ion current Iz amounts to:
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where the total ion number density /;, the electric charge unit e, the ion flow speed u; ;.4m,
and the faceplate area Arp are expressed in conventional units. The theoretical basis
for the spherical LP current measurements is the “orbital motion limited (OML)” approach
according to Mott-Smith and Langmuir (1926). At sufficiently negative bias (usually -2.5 V)
and neglecting the photoelectrons the current is (equ.(1) in Buchert and Nilsson (2016)):
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with r, as probe radius, V} its bias voltage (-2.5 V), Vs the satellite potential, and £;
the ion ram energy, which is supposed to be the S/C velocity (~ 7.6 km/s) in the first
approximation. E; is given in units of electron volt (eV) as E; =m; u?/(2¢). The Swarm
LP ion densities that result from equation (2) were originally derived for a single-species
(O™) ionosphere (Buchert and Nilsson, 2016). The analysis within the SLIDEM project
(Pakhotin et al., 2022), however, has been generalized to multiple ion species with the
effective ion mass M., defined as:
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Fig. 2. Predictions of effective ion masses M.r¢ along the Swarm satellite orbits according to the empirical model of the
International Reference lonosphere 2016 (IRI-2016) for the whole measurement interval of the Swarm mission up to
now (Dec 2013 — March 2024). It comprises approximately one full solar cycle of solar activity. The minimum-maximum
ranges of M.¢¢ along full circular, polar orbits are shown for each orbit of the Swarm-A and -C satellites (in green color)
as well as for the higher up orbiting Swarm-B (in blue, partly “below” the green ones). Long-term and short-term solar
activity dependences (cf. Fig. 3) are clearly visible.
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Fig. 3. Solar and geomagnetic activity variations during the same time interval as in Fig. 2, Dec 2013 — March 2024,
according to the parameters: 1.) Geomagnetic Equatorial Disturbance storm time index (Dst, upper panel) in units
of [nT] and 2.) the Solar Radio Flux at 10.7 cm wavelength (2800 MHz), known as F10.7 index (bottom panel) in
s.fu. of [1072* W m~2 Hz~']. The abszissa shows the time progression in Modified Julian Days since Jan 1st, 2000
(MJD_2000). The individual yearly periods are indicated by numbers at the bottom of the plot.

Langmuir probe: theoretical basis and model approach

The first derivative (or admittance) d;,,, results from equ. (2) to (Pakhotin et al., 2022):

dion oI/0V, = 271'?"?, e? Ne/(Meyy u;) (4)

According to the SLIDEM methodology, the ion admittance and faceplate currents are used to estimate
of ion density and the along-track ion drift by solving equations (1) and (4) simultaneously rather than
independently, yielding also the effective ion mass M. this way (see also: Burchill and Lomidze, 2024):
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The OML theory is valid, if the probe radius r, is small compared with the sheath’s thickness that surrounds
it, and the LP itself should be mounted outside of the satellite’s sheath, which can be estimated by the
Debye shielding distance. According to Brace (1998) a boom length of 30 to 100 cm is adequate for most
ionosphere applications. In a magnetized plasma, which is probed by the Swarm satellites at LEO, the
electron dynamics are controlled by the strenght and direction of the geomagnetic field (Marchand, 2016;
Miyake et al., 2020; Resendiz Lira and Marchand, 2021).

Fig. 4. lon trajectories of O" (red) and H* (blue) are deflected
near the FP due to curved equipotentials near the satellite and
FP’s perimeter. Both species are aimed slightly below or above
(dashed arrows) the FP with velocities exactly from the ram
direction. Three speeds are considered: the ram speed (equal
to Vsat), and the ram speed +uv;,, the ion’s thermal speed with

2T (from Resendiz Lira et al., 2019, Fig. 6).
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A series of numerical simulations with various parameters re-
sulted in an approximative correction formula as:

Front Plate - IFP = _Ne € Ui,ram Ageo(l +6m,odel) (6)
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With:
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0 Where P is the perimeter of the FP (the sum of the length of all
sides), V is the plate potential with respect to background plasma,
T. is the electron temperature, and A p the electron Debye length.
a, B, and ~ are fitting parameters. Their optimal values were
found by (Resendiz Lira et al., 2019) to be 0.06929, 0.11552, and
66.0913 x 10, respectively.
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A similar empirical correction was found by a series of three-dimensional kinetic simulations using the
PTetra model (Marchand, 2012) and applying a large bundle of typical ionospheric conditions to obtain an
optimal correction term (Resendiz Lira and Marchand, 2021, equ. 14) for the LP ion current:
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With (Resendiz Lira and Marchand, 2021, equ. 15):

0.1
E
o 0T
>
4y}
N

-0.1 |

|
-0.2 -0.1 0 0.1
X-axis (m)

Fig. 5. O™ (red) and H ™ (blue) ion trajectories deflected in the satellite sheath when the spherical probes are operated
in the ion saturation region. Both species are aimed slightly below or above the spherical probe with velocities exactly
from the ram direction. Particles with lower energy (speed and mass) are deflected the most, and the ones with the
higher speed and mass are deflected the least.

The M,y values in this study are derived from the high-gain Swarm Langmuir probe alone using equations
4 and 7 above, i.e., as ratio of the ion current and its admittance in the ion acceleration regime. This has
the advantage, that the direct dependence on plasma density cancels out, the along-track ion drift motion,
however, that is governed by V = E x B/|B|? dominates at high latitudes (mlat > ~ 4+50°) and can be
calculated there independently (and the like the re-estimated plasma density).

Estimations of the effective ion mass
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Fig. 6. Comparison of estimated effective ion masses M.s; for Swarm-C on Aug 08, 2018, as obtained from SLIDEM
(violet curves), resulting from LP measurements as ratio of ion current and ion admittance (teal curves), and according
to the IRI-2016 empirical model, calculated along the satellite orbit (magenta). The M. records are shown versus
magnetic QD-latitude for ascending (upper panel) and descending (bottom panel) orbital parts.
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Fig. 7. Estimated effective ion mass values M.y like in Fig. 6 above, but drawn here for full orbits of the three days
Aug 24-26, 2018, versus argument of orbit. The left column shows Swarm-B observations along a prenoon-premidnight
orbit (~10—22 LT), while the right column shows Swarm-C measurements along an early morning-afternoon orbit (~03—
15 LT). The left half of each panel exhibits ascending orbital parts, while the right half displays the descending parts.
The three days cover a geomagnetic storm interval with minimum-Dst values of -175 nT on 05 UT on Aug 26, 2018,
and Kp values up to 7+. Enhanced M. values are clearly visible on the last (storm) day of the interval. The dashed
horizontal lines indicate pure oxygen ion dominance (M.ss = 16).
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Long-term variation of the effective ion mass M.,
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Fig. 8. Long-term variation of M.s¢ , as estimated from the ion current and admittance of the high-gain Langmuir probe
alone using equations 7 and 4, respectively. The latest seven full chunk intervals (Nos. 8 through 14) for about the last
five years are shown that cover each all local times for both ascending and descendig orbital branches. The ordinate
is drawn along the orbital path as so-called argument of orbit with equatorial crossings at 0°and 180°for the ascending
and descending branches, respectively. Valid M.;; estimations are confinded to £50°around the equtorial crossings,
while the auroral and polar regions are affected by large along-track drift.
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Fig. 9. Zoomed-in variation of effective ion mass M. during a few days around the geomagnetic storm event of
August 26, 2018 (cf. middle column, bottom) for both Swarm-B (left side) and Swarm-C (right) records. The upper
panels show M.y as estimated from the ion current and admittance of the high-gain Langmuir probe alone as plotted
in Fig. 8 for full-chunk intervals. The bottom panels show the same satellite records during the same storm period, but
with the results from the SLIDEM data set. The storm event is clearly marked by a pronounced increase of M. and
the subsequent gradual return to prestorm conditions with minor differences due to the actual local time during Swarm
overflights.
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