

ROGRAMME OF THE UROPEAN UNION

CO, PLUME DETECTION USING NEURAL NETWORKS: APPLICATION TO SYNTHETIC IMAGES OF CITIES AND POWER PLANTS

Joffrey Dumont Le Brazidec¹, Pierre Vanderbecken¹, Alban Farchi¹, Marc Bocquet¹, Jinghui Lian², Grégoire Broquet², Thomas Lauvaux², Alexandre Danjou² CEREA, École des Ponts and EdF R&D, Île-de-France, France [1]

LSCE, Laboratoire des sciences du climat et de l'environnement, France [2]

Copernicus CoCO2 project, prototype of a CO₂ monitoring service which aims, in particular, to improve the estimation of CO₂ emissions from new satellites launched from 2025 onwards.

Our aim:

Focus on CO₂ emissions from cities and power plants based on the spaceborne imagery of the CO₂ atmospheric plumes from these sources.

XCO2 field

Motivation and

Paris (WRF-Chem) and Berlin, various power plants (COSMO-GHG)

CNN methodology

Original plume

[ppmv]

induced by cities

difficult to detect

Convolutional Neural Networks: U-net algorithm

capture spatial features of the image through application of successive filters

Boolean plume

- i.e., transform image into relevant features maps
- \succ used to recognise spatial features that belong to an anthropogenic plume 1 x 160 x 160 Output image 1 x 160 x 160 Input image

boolean

Segmentation results

Targetted plume

weight bool

SENTINEL-5P MISSION: 5 YEARS ANNIVERSARY 10-14 OCTOBER 2022 TAORMINA, ITALY